Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/346213
Type: Artigo
Title: Two-body perturbation theory versus first order perturbation theory: A comparison based on the square-well fluid
Author: Franco, Luís Fernando Mercier
Castier, Marcelo
Economou, Ioannis G.
Abstract: We show that the Zwanzig first-order perturbation theory can be obtained directly from a truncated Taylor series expansion of a two-body perturbation theory and that such truncation provides a more accurate prediction of thermodynamic properties than the full two-body perturbation theory. This unexpected result is explained by the quality of the resulting approximation for the fluid radial distribution function. We prove that the first-order and the two-body perturbation theories are based on different approximations for the fluid radial distribution function. To illustrate the calculations, the square-well fluid is adopted. We develop an analytical expression for the two-body perturbed Helmholtz free energy for the square-well fluid. The equation of state obtained using such an expression is compared to the equation of state obtained from the first-order approximation. The vapor-liquid coexistence curve and the supercritical compressibility factor of a square-well fluid are calculated using both equations of state and compared to Monte Carlo simulation data. Finally, we show that the approximation for the fluid radial distribution function given by the first-order perturbation theory provides closer values to the ones calculated via Monte Carlo simulations. This explains why such theory gives a better description of the fluid thermodynamic behavior
Subject: Perturbação (Matemática)
Country: Estados Unidos
Editor: AIP Publishing
Rights: Fechado
Identifier DOI: 10.1063/1.4994823
Address: https://aip.scitation.org/doi/10.1063/1.4994823
Date Issue: 2017
Appears in Collections:FEQ - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
000417497000011.pdf340.34 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.