Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/346137
Type: Artigo
Title: High adhesion strength and hybrid irreversible/reversible full-PDMS microfluidic chips
Author: Letícia S.Shiroma
Aline F.Oliveira
Lobo-Júnior, Eulicio O.
Coltro, Wendell K. T.
Gobbi, Angelo L.
Torre, Lucimara G. de La
Lima, Renato S.
Abstract: To the best of our knowledge, this paper outlines for the first time high adhesion and hybrid irreversible/reversible microfluidic devices fully composed of polydimethylsiloxane (PDMS). These chips were fabricated by the sandwich bonding (SWB), a method that was recently deployed by our group. SWB offers simple, fast, and low cost operation requiring only a laboratory oven. The devices showed burst pressures of up to 4.5 MPa. This value is more than tenfold the pressures withstood by the full-PDMS chips described in literature. In terms of the reversible behavior, the ability for disassembling the chip slides is crucial in research and development stages, especially when the device integrates high-cost components or harsh cleaning steps are needed. Following successive steps of detachment and bonding, the channels still withstood high pressures of approximately 1.8 MPa. Finally, the emulsification of corn oil 4.0% w/w to polyglycerol polyricinoleate with 10.0 μmol L−1 rhodamine B aqueous solution was realized to show the relevance in enhancing the flow rate in microfluidics. Such experiment was conducted at total flow rates of 0.8–160.0 μL min−1. The decrease in size and polydispersity of the droplets was observed at increasing flow rates. Monodisperse emulsions were achieved only at 160.0 μL min−1
Subject: Eletroforese
Country: Países Baixos
Editor: Elsevier
Rights: Fechado
Identifier DOI: 10.1016/j.aca.2016.11.048
Address: https://www.sciencedirect.com/science/article/pii/S0003267016313964
Date Issue: 2017
Appears in Collections:IQ - Artigos e Outros Documentos
FEQ - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
000392773800008.pdf8.7 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.