Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/346132
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE ESTADUAL DE CAMPINASpt_BR
dc.contributor.authorunicampGeromel, José Cláudio-
dc.contributor.authorunicampDeaecto, Grace Silva-
dc.typeArtigopt_BR
dc.titleGeneralized Kleinman-Newton methodpt_BR
dc.contributor.authorGeromel, JC-
dc.contributor.authorDeaecto, GS-
dc.subjectMétodos numéricospt_BR
dc.subjectControle ótimopt_BR
dc.subject.otherlanguageNumerical methodspt_BR
dc.subject.otherlanguageOptimal controlpt_BR
dc.description.abstractThis paper addresses the general problem of optimal linear control design subject to convex gain constraints. Classical approaches based exclusively on Riccati equations or linear matrix inequalities are unable to treat problems that incorporate feedback gain constraints, for instance, the reduced-order (including static) output feedback control design. In this paper, these two approaches are put together to obtain a genuine generalization of the celebrated Kleinman-Newton method. The convergence to a local minimum is monotone. We believe that other control design problems can be also considered by the adoption of the same ideas and algebraic manipulations. Several examples borrowed from the literature are solved for illustration and comparisonpt_BR
dc.relation.ispartofOptimal control applications and methodspt_BR
dc.relation.ispartofabbreviationOptim. control appl. methodspt_BR
dc.publisher.cityOxfordpt_BR
dc.publisher.countryReino Unidopt_BR
dc.publisherJohn Wiley & Sonspt_BR
dc.date.issued2018-
dc.date.monthofcirculationMar./Apr.pt_BR
dc.language.isoengpt_BR
dc.description.volume39pt_BR
dc.description.issuenumber2pt_BR
dc.description.issuespecialGlobal and robust optimization of dynamic systemspt_BR
dc.description.firstpage1130pt_BR
dc.description.lastpage1140pt_BR
dc.rightsFechadopt_BR
dc.sourceWOSpt_BR
dc.identifier.issn0143-2087pt_BR
dc.identifier.eissn1099-1514pt_BR
dc.identifier.doi10.1002/oca.2400pt_BR
dc.identifier.urlhttps://onlinelibrary.wiley.com/doi/full/10.1002/oca.2400pt_BR
dc.description.sponsorshipCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQpt_BR
dc.description.sponsordocumentnumber443166/2014-5; 306911/2015-9; 303887/2014-1pt_BR
dc.date.available2020-07-27T13:02:56Z-
dc.date.accessioned2020-07-27T13:02:56Z-
dc.description.provenanceSubmitted by Mariana Aparecida Azevedo (mary1@unicamp.br) on 2020-07-27T13:02:56Z No. of bitstreams: 0. Added 1 bitstream(s) on 2021-01-08T19:02:32Z : No. of bitstreams: 1 000427136800044.pdf: 725796 bytes, checksum: f82ae863146cf7e1e94dee7028b107af (MD5)en
dc.description.provenanceMade available in DSpace on 2020-07-27T13:02:56Z (GMT). No. of bitstreams: 0 Previous issue date: 2018en
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/346132-
dc.contributor.departmentDepartamento de Engenharia de Computação e Automação Industrialpt_BR
dc.contributor.departmentDepartamento de Mecânica Computacionalpt_BR
dc.contributor.unidadeFaculdade de Engenharia Elétrica e de Computaçãopt_BR
dc.contributor.unidadeFaculdade de Engenharia Mecânicapt_BR
dc.subject.keywordLinear matrix inequalitypt_BR
dc.identifier.source000427136800044pt_BR
dc.creator.orcid0000-0002-4961-3428pt_BR
dc.creator.orcid0000-0001-8937-7258pt_BR
dc.type.formArtigo de pesquisapt_BR
Appears in Collections:FEEC - Artigos e Outros Documentos
FEM - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
000427136800044.pdf708.79 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.