Please use this identifier to cite or link to this item:
http://repositorio.unicamp.br/jspui/handle/REPOSIP/345816
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.CRUESP | UNIVERSIDADE ESTADUAL DE CAMPINAS | pt_BR |
dc.contributor.authorunicamp | Nose-Filho, Kenji | - |
dc.contributor.authorunicamp | Takahata, André Kazuo | - |
dc.contributor.authorunicamp | Lopes, Renato da Rocha | - |
dc.contributor.authorunicamp | Romano, João Marcos Travassos | - |
dc.type | Artigo | pt_BR |
dc.title | A fast algorithm for sparse multichannel blind deconvolution | pt_BR |
dc.contributor.author | Nose-Filho, Kenji | - |
dc.contributor.author | Takahata, André K. | - |
dc.contributor.author | Lopes, Renato | - |
dc.contributor.author | Romano, João M. T. | - |
dc.subject | Deconvolução | pt_BR |
dc.subject.otherlanguage | Deconvolution | pt_BR |
dc.description.abstract | We have addressed blind deconvolution in a multichannel framework. Recently, a robust solution to this problem based on a Bayesian approach called sparse multichannel blind deconvolution (SMBD) was proposed in the literature with interesting results. However, its computational complexity can be high. We have proposed a fast algorithm based on the minimum entropy deconvolution, which is considerably less expensive. We designed the deconvolution filter to minimize a normalized version of the hybrid l(1)/l(2)-norm loss function. This is in contrast to the SMBD, in which the hybrid l(1)/l(2)-norm function is used as a regularization term to directly determine the deconvolved signal. Results with synthetic data determined that the performance of the obtained deconvolution filter was similar to the one obtained in a supervised framework. Similar results were also obtained in a real marine data set for both techniques | pt_BR |
dc.relation.ispartof | Geophysics | pt_BR |
dc.publisher.city | Tulsa, OK | pt_BR |
dc.publisher.country | Estados Unidos | pt_BR |
dc.publisher | Society of Exploration Geophysicists | pt_BR |
dc.date.issued | 2016 | - |
dc.date.monthofcirculation | Jan. | pt_BR |
dc.language.iso | eng | pt_BR |
dc.description.volume | 81 | pt_BR |
dc.description.issuenumber | 1 | pt_BR |
dc.description.firstpage | V7 | pt_BR |
dc.description.lastpage | V16 | pt_BR |
dc.rights | Fechado | pt_BR |
dc.source | WOS | pt_BR |
dc.identifier.issn | 0016-8033 | pt_BR |
dc.identifier.eissn | 1942-2156 | pt_BR |
dc.identifier.doi | 10.1190/GEO2015-0069.1 | pt_BR |
dc.identifier.url | https://library.seg.org/doi/full/10.1190/geo2015-0069.1 | pt_BR |
dc.description.sponsorship | CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQ | pt_BR |
dc.description.sponsorship | COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPES | pt_BR |
dc.description.sponsordocumentnumber | não tem | pt_BR |
dc.description.sponsordocumentnumber | não tem | pt_BR |
dc.date.available | 2020-07-21T13:26:15Z | - |
dc.date.accessioned | 2020-07-21T13:26:15Z | - |
dc.description.provenance | Submitted by Mariana Aparecida Azevedo (mary1@unicamp.br) on 2020-07-21T13:26:15Z No. of bitstreams: 0. Added 1 bitstream(s) on 2021-01-08T19:02:16Z : No. of bitstreams: 1 000377880100019.pdf: 3302348 bytes, checksum: c7e861950e93922bb4c57c867ac141f2 (MD5) | en |
dc.description.provenance | Made available in DSpace on 2020-07-21T13:26:15Z (GMT). No. of bitstreams: 0 Previous issue date: 2016 | en |
dc.identifier.uri | http://repositorio.unicamp.br/jspui/handle/REPOSIP/345816 | - |
dc.contributor.department | sem informação | pt_BR |
dc.contributor.department | sem informação | pt_BR |
dc.contributor.department | Departamento de Comunicações | pt_BR |
dc.contributor.department | Departamento de Comunicações | pt_BR |
dc.contributor.unidade | Faculdade de Engenharia Elétrica e de Computação | pt_BR |
dc.contributor.unidade | Faculdade de Engenharia Elétrica e de Computação | pt_BR |
dc.contributor.unidade | Faculdade de Engenharia Elétrica e de Computação | pt_BR |
dc.contributor.unidade | Faculdade de Engenharia Elétrica e de Computação | pt_BR |
dc.subject.keyword | Bayesian approach | pt_BR |
dc.subject.keyword | Fast algorithm | pt_BR |
dc.identifier.source | 000377880100019 | pt_BR |
dc.creator.orcid | sem informação | pt_BR |
dc.creator.orcid | sem informação | pt_BR |
dc.creator.orcid | 0000-0003-2618-5499 | pt_BR |
dc.creator.orcid | 0000-0002-2159-160X | pt_BR |
dc.type.form | Artigo técnico | pt_BR |
Appears in Collections: | FEEC - Artigos e Outros Documentos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
000377880100019.pdf | 3.22 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.