Please use this identifier to cite or link to this item:
Type: Artigo
Title: Riemann manifold Langevin methods on stochastic volatility estimation
Author: Zevallos, Mauricio
Gasco, Loretta
Ehlersc, Ricardo
Abstract: In this article, we perform Bayesian estimation of stochastic volatility models with heavy tail distributions using Metropolis adjusted Langevin (MALA) and Riemman manifold Langevin (MMALA) methods. We provide analytical expressions for the application of these methods, assess the performance of these methodologies in simulated data, and illustrate their use on two financial time series datasets.
Subject: Teoria bayesiana de decisão estatística
Monte Carlo
Método de
Processos de
Avaliação de riscos
Sistemas estocásticos
Finanças - Métodos estatísticos
Bayesian statistical decision theory
Monte Carlo method
Markov processes
Risk assessment
Stochastic systems
Finance - Statistical methods
Country: Estados Unidos
Editor: Taylor & Francis
Rights: fechado
Identifier DOI: 10.1080/03610918.2016.1255972
Date Issue: 2017
Appears in Collections:IMECC - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
000422900600026.pdf566.1 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.