Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/345331
Type: Artigo
Title: On uniform closeness of local times of markov chains and i.i.d. sequences
Author: Bernardini, Diego F. de
Gallesco, Christophe
Popov, Serguei
Abstract: In this paper we consider the field of local times of a discrete-time Markov chain on a general state space, and obtain uniform (in time) upper bounds on the total variation distance between this field and the one of a sequence of n i.i.d. random variables with law given by the invariant measure of that Markov chain. The proof of this result uses a refinement of the soft local time method of Popov and Teixeira (2015).
Subject: Linha de desacoplamento
Entrelaçamentos aleatórios
Tempos locais (Processo estocástico)
Country: Holanda
Editor: Elsevier
Rights: fechado
Identifier DOI: 10.1016/j.spa.2017.10.015
Address: https://www.sciencedirect.com/science/article/pii/S0304414917302752
Date Issue: 2017
Appears in Collections:IMECC - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
2-s2.0-85034749618.pdf546.14 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.