Please use this identifier to cite or link to this item:
Type: Artigo
Title: Charge carrier transport in defective reduced graphene oxide as quantum dots and nanoplatelets in multilayer films
Author: Jimenez, M. J. M.
Oliveira, R. F.
Almeida, T. P.
Ferreira, R. C. H.
Bufon, C. C. B.
Rodrigues, V.
Pereira-da-Silva, M. A.
Gobbi, A. L.
Piazzetta, M. H. O.
Riul Jr., A.
Abstract: Graphene is a breakthrough 2D material due to its unique mechanical, electrical, and thermal properties, with considerable responsiveness in real applications. However, the coverage of large areas with pristine graphene is a challenge and graphene derivatives have been alternatively exploited to produce hybrid and composite materials that allow for new developments, considering also the handling of large areas using distinct methodologies. For electronic applications there is significant interest in the investigation of the electrical properties of graphene derivatives and related composites to determine whether the characteristic 2D charge transport of pristine graphene is preserved. Here, we report a systematic study of the charge transport mechanisms of reduced graphene oxide chemically functionalized with sodium polystyrene sulfonate (PSS), named as GPSS. GPSS was produced either as quantum dots (QDs) or nanoplatelets (NPLs), being further nanostructured with poly(diallyldimethylammonium chloride) through the layer-by-layer (LbL) assembly to produce graphene nanocomposites with molecular level control. Current-voltage (I-V) measurements indicated a meticulous growth of the LbL nanostructures onto gold interdigitated electrodes (IDEs), with a space-charge-limited current dominated by a Mott-variable range hopping mechanism. A 2D intra-planar conduction within the GPSS nanostructure was observed, which resulted in effective charge carrier mobility (mu) of 4.7 cm(2) V-1 s(-1) for the QDs and 34.7 cm(2) V-1 s(-1) for the NPLs. The LbL assemblies together with the dimension of the materials (QDs or NPLs) were favorably used for the fine tuning and control of the charge carrier mobility inside the LbL nanostructures. Such 2D charge conduction mechanism and high ae values inside an interlocked multilayered assembly containing graphene-based nanocomposites are of great interest for organic devices and functionalization of interfaces.
Subject: Óxido de grafeno reduzido
Pontos quânticos
Reduced graphene oxide
Pontos quânticos
Country: Reino Unido
Editor: Institute of Physics Publishing
Rights: fechado
Identifier DOI: 10.1088/1361-6528/aa91c2
Date Issue: 2017
Appears in Collections:IFGW - Artigos e Outros Documentos
FEEC - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
000415606900006.pdf3.49 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.