Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/344793
Type: Artigo
Title: Non-Abelian Ball-Chiu vertex for arbitrary Euclidean momenta
Author: Aguilar, A. C.
Cardona, J. C.
Ferreira, M. N.
Papavassiliou, J.
Abstract: We determine the non-Abelian version of the four nontransverse form factors of the quark-gluon vertex, using exact expressions derived from the Slavnov-Taylor identity that this vertex satisfies. In addition to the quark and ghost propagators, a key ingredient of the present approach is the quark-ghost scattering kernel, which is computed within the one-loop dressed approximation. The vertex form factors obtained from this procedure are evaluated for arbitrary Euclidean momenta, and display features not captured by the well-known Ball-Chiu vertex, deduced from the Abelian (ghost-free) Ward identity. Particularly interesting in this analysis is the so-called soft-gluon limit, which, unlike other kinematic configurations considered, is especially sensitive to the approximations employed for the vertex entering in the quark-ghost scattering kernel, and may even be affected by a subtle numerical instability. As an elementary application of the results obtained, we evaluate and compare certain renormalization-point-independent combinations, which contribute to the interaction kernels appearing in the standard quark gap and Bethe-Salpeter equations. In doing so, even though all form factors of the quark-gluon vertex, and in particular the transverse ones which are unconstrained by our procedure, enter nontrivially in the aforementioned kernels, only the contribution of a single form factor, corresponding to the classical (tree-level) tensor, will be considered.
Subject: Cromodinâmica quântica
Simetria quebrada (Física)
Instrumentos de medição
Country: Estados Unidos
Editor: American Physical Society
Rights: aberto
Identifier DOI: 10.1103/PhysRevD.96.014029
Address: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.014029
Date Issue: 2017
Appears in Collections:IFGW - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
000406540300002.pdf12.02 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.