Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/344023
Type: TESE DIGITAL
Degree Level: Doutorado
Title: Uncertainty quantification of petroleum reservoirs : a estructure Bayesian approach = Quantificação de incertezas em reservatórios de petróleo: uma abordagem Bayesiana estruturada
Title Alternative: Quantificação de incertezas em reservatórios de petróleo : uma abordagem Bayesiana estruturada
Author: Formentin, Helena Nandi, 1987-
Advisor: Schiozer, Denis José, 1963-
Caiado, Camila C. S.
Vernon, Ian
Goldstein, Michael
Abstract: Resumo: Essa tese propõe uma abordagem Bayesiana sistemática para quantificação de incertezas de reservatórios de petróleo. No primeiro artigo, demonstramos o potencial de funções-objetivo adicionais que são baseadas em eventos específicos da fase de gerenciamento de reservatórios, a fim de melhorar a representação do comportamento do reservatório e a qualidade da previsão probabilística. Irrupção de água e desvio de produtividade foram selecionados, proporcionando um entendimento de descontinuidades no modelo numérico e nos dados de simulação quando comparado com o uso exclusivo de funções objetivo tradicionais (por exemplo, taxa de produção). No segundo artigo, definimos e implementados uma metodologia sistemática para redução de incertezas que combina simulação de reservatórios e técnicas de emulação em uma abordagem de Ajuste de Histórico Bayesiano para Redução de Incertezas (BHMUR, Bayesian History Matching for Uncertainty Reduction, acrônimo em inglês). Flexibilidade, repetitividade e escalabilidade são as características principais dessa estrutura geral que incorpora inovações tais como fases de avaliação e múltiplas técnicas de emulação. Esse procedimento potencialmente transforma a prática de BHMUR em uma mais padronizada para diversas aplicações. Aplicamos em um estudo de caso com 26 atributos incertos, dados de produção de 25 poços e 11+ anos de dados de histórico de produção baseado em uma realidade hipotética, resultando na construção de 115 emuladores validados e uma pequena fração do espaço de busca apropriadamente considerada não-implausível ao final do processo de redução de incertezas. No terceiro artigo, expandimos metodologias para estágios críticos na prática de BHMUR: (1) extensão da formulação estatística de BHMUR para acomodar emuladores do tipo classificadores; (2) seleção efetiva de uma combinação de dados de produção para emulação; (3) validação de emuladores baseados em múltiplos critérios; e (4) consideração de erros sistemáticos e aleatórios em dados observados. No último artigo, avaliamos um passo crítico para a prática de BHMUR, que é a quantificação de discrepância do modelo para contabilizar a representação de sistemas físicos a partir de modelos imperfeitos. Propusemos uma metodologia para quantificar a discrepância do modelo originada em erros de dados medidos e informados ao simulador numérico como condição de contorno (target). A aplicação da metodologia demonstrou que a discrepância do modelo é simultaneamente dependente de tempo e da posição no espaço de busca: uma descoberta importante para orientar o processo de quantificação de incertezas em estudos de caso baseados em reservatórios de petróleo reais

Abstract: This thesis proposes a systematic Bayesian approach for uncertainty quantification with an application for petroleum reservoirs. First, we demonstrated the potential of additional misfit functions based on specific events in reservoir management, to gain knowledge about reservoir behaviour and quality in probabilistic forecasting. Water breakthrough and productivity deviation were selected and provided insights of discontinuities in simulation data when compared to the use of traditional misfit functions (e.g. production rate, BHP) alone. Second, we designed and implemented a systematic methodology for uncertainty reduction combining reservoir simulation and emulation techniques under the Bayesian History Matching for Uncertainty Reduction (BHMUR) approach. Flexibility, repeatability and scalability are the main features of this high-level structure, incorporating innovations such as phases of evaluation and multiple emulation techniques. This workflow potentially turns the practice of BHMUR more standardised across applications. It was applied for a complex case study, with 26 uncertainties, outputs from 25 wells and 11+ years of historical data based on a hypothetical reality, resulting in the construction of 115 valid emulators and a small fraction of the original searching space appropriately considered non-implausible by the end of the uncertainty reduction process. Third, we expanded methodologies for critical steps in the BHMUR practice: (1) extension of statistical formulation to two-class emulators; (2) efficient selection of a combination of outputs to emulate; (3) validation of emulators based on multiple criteria; and (4) accounting for systematic and random errors in observed data. Finally, a critical step in the BHMUR approach is the quantification of model discrepancy which accounts for imperfect models aiming to represent a real physical system. We proposed a methodology to quantify the model discrepancy originated from errors in target data that are set as boundary conditions in a numerical simulator. Its application demonstrated that model discrepancy is dependent on both time and location in the input space, which is a central finding to guide the BHMUR practice in case of studies based on real fields
Subject: Engenharia do petróleo
Reservatórios (Simulação)
Estatística
Inferência bayesiana
Análise de dados
Language: Inglês
Editor: [s.n.]
Citation: FORMENTIN, Helena Nandi. Uncertainty quantification of petroleum reservoirs : a estructure Bayesian approach = Quantificação de incertezas em reservatórios de petróleo: uma abordagem Bayesiana estruturada. 2020. 1 recurso online (205 p.) Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica e Durham University, Campinas, SP.
Date Issue: 2020
Appears in Collections:FEM - Tese e Dissertação

Files in This Item:
File SizeFormat 
Formentin_HelenaNandi_D.pdf11.8 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.