Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/343631
Type: TESE DIGITAL
Degree Level: Doutorado
Title: Graph-based rank aggregation : Agregação de ranks baseada em grafos
Title Alternative: Agregação de ranks baseada em grafos
Author: Dourado, Ícaro Cavalcante, 1985-
Advisor: Torres, Ricardo da Silva, 1977-
Abstract: Resumo: Neste trabalho, apresentamos uma abordagem robusta de agregação de listas baseada em grafos, capaz de combinar resultados de modelos de recuperação isolados. O método segue um esquema não supervisionado, que é independente de como as listas isoladas são geradas. Nossa abordagem é capaz de incorporar modelos heterogêneos, de diferentes critérios de recuperação, tal como baseados em conteúdo textual, de imagem ou híbridos. Reformulamos o problema de recuperação ad-hoc como uma recuperação baseada em fusion graphs, que propomos como um novo modelo de representação unificada capaz de mesclar várias listas e expressar automaticamente inter-relações de resultados de recuperação. Assim, mostramos que o sistema de recuperação se beneficia do aprendizado da estrutura intrínseca das coleções, levando a melhores resultados de busca. Nossa formulação de agregação baseada em grafos, diferentemente das abordagens existentes, permite encapsular informação contextual oriunda de múltiplas listas, que podem ser usadas diretamente para ranqueamento. Experimentos realizados demonstram que o método apresenta alto desempenho, produzindo melhores eficácias que métodos recentes da literatura e promovendo ganhos expressivos sobre os métodos de recuperação fundidos. Outra contribuição é a extensão da proposta de grafo de fusão visando consulta eficiente. Trabalhos anteriores são promissores quanto à eficácia, mas geralmente ignoram questões de eficiência. Propomos uma função inovadora de agregação de consulta, não supervisionada, intrinsecamente multimodal almejando recuperação eficiente e eficaz. Introduzimos os conceitos de projeção e indexação de modelos de representação de agregação de consulta com base em grafos, e a sua aplicação em tarefas de busca. Formulações de projeção são propostas para representações de consulta baseadas em grafos. Introduzimos os fusion vectors, uma representação de fusão tardia de objetos com base em listas, a partir da qual é definido um modelo de recuperação baseado intrinsecamente em agregação. A seguir, apresentamos uma abordagem para consulta rápida baseada nos vetores de fusão, promovendo agregação de consultas eficiente. O método apresentou alta eficácia quanto ao estado da arte, além de trazer uma perspectiva de eficiência pouco abordada. Ganhos consistentes de eficiência são alcançadas em relação aos trabalhos recentes. Também propomos modelos de representação baseados em consulta para problemas gerais de predição. Os conceitos de grafos de fusão e vetores de fusão são estendidos para cenários de predição, nos quais podem ser usados para construir um modelo de estimador para determinar se um objeto de avaliação (ainda que multimodal) se refere a uma classe ou não. Experimentos em tarefas de classificação multimodal, tal como detecção de inundação, mostraram que a solução é altamente eficaz para diferentes cenários de predição que envolvam dados textuais, visuais e multimodais, produzindo resultados melhores que vários métodos recentes. Por fim, investigamos a adoção de abordagens de aprendizagem para ajudar a otimizar a criação de modelos de representação baseados em consultas, a fim de maximizar seus aspectos de capacidade discriminativa e eficiência em tarefas de predição e de busca

Abstract: In this work, we introduce a robust graph-based rank aggregation approach, capable of combining results of isolated ranker models in retrieval tasks. The method follows an unsupervised scheme, which is independent of how the isolated ranks are formulated. Our approach is able to incorporate heterogeneous models, defined in terms of different ranking criteria, such as those based on textual, image, or hybrid content representations. We reformulate the ad-hoc retrieval problem as a graph-based retrieval based on {\em fusion graphs}, which we propose as a new unified representation model capable of merging multiple ranks and expressing inter-relationships of retrieval results automatically. By doing so, we show that the retrieval system can benefit from learning the manifold structure of datasets, thus leading to more effective results. Our graph-based aggregation formulation, unlike existing approaches, allows for encapsulating contextual information encoded from multiple ranks, which can be directly used for ranking. Performed experiments demonstrate that our method reaches top performance, yielding better effectiveness scores than state-of-the-art baseline methods and promoting large gains over the rankers being fused. Another contribution refers to the extension of the fusion graph solution for efficient rank aggregation. Although previous works are promising with respect to effectiveness, they usually overlook efficiency aspects. We propose an innovative rank aggregation function that it is unsupervised, intrinsically multimodal, and targeted for fast retrieval and top effectiveness performance. We introduce the concepts of embedding and indexing graph-based rank-aggregation representation models, and their application for search tasks. Embedding formulations are also proposed for graph-based rank representations. We introduce the concept of {\em fusion vectors}, a late-fusion representation of objects based on ranks, from which an intrinsically rank-aggregation retrieval model is defined. Next, we present an approach for fast retrieval based on fusion vectors, thus promoting an efficient rank aggregation system. Our method presents top effectiveness performance among state-of-the-art related work, while promoting an efficiency perspective not yet covered. Consistent speedups are achieved against the recent baselines in all datasets considered. Derived from the fusion graphs and fusion vectors, we propose rank-based representation models for general prediction problems. The concepts of fusion graphs and fusion vectors are extended to prediction scenarios, where they can be used to build an estimator model to determine whether an input (even multimodal) object refers to a class or not. Performed experiments in the context of multimodal classification tasks, such as flood detection, show that the proposed solution is highly effective for different detection scenarios involving textual, visual, and multimodal features, yielding better detection results than several state-of-the-art methods. Finally, we investigate the adoption of learning approaches to help optimize the creation of rank-based representation models, in order to maximize their discriminative power and efficiency aspects in prediction and search tasks
Subject: Sistemas de recuperação da informação
Sistemas de reconhecimento de padrões
Representações dos grafos
Language: Inglês
Editor: [s.n.]
Citation: DOURADO, Ícaro Cavalcante. Graph-based rank aggregation: Agregação de ranks baseada em grafos. 2020. 1 recurso online (119 p.) Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação, Campinas, SP.
Date Issue: 2020
Appears in Collections:IC - Tese e Dissertação

Files in This Item:
File SizeFormat 
Dourado_IcaroCavalcante_D.pdf7.53 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.