Please use this identifier to cite or link to this item:
Type: Artigo
Title: Nanoformulation as a tool for improvement of thiamethoxam encapsulation and evaluation of ecotoxicological impacts
Author: Assalin, Marcia Regina
Santos, Lucas Daniel Lavansdoski dos
Souza, Debora Renata Cassoli de
Rosa, Maria Aparecida
Duarte, Rafaela Rangni Moltocaro
Castanha, Rodrigo Fernandes
Donaire, Patricia Pulcini Rosvald
Durán, Nelson
Abstract: Huanglonbing, or citrus greening, is the most serious disease of citrus which cause large economic losses. One of the strategies to avoid the spread of the disease is the control of Diaphorina citri psyllid, its insect vector, by the application of insecticides. Development of nanoinsecticides, which are less harmful to the environment and more efficient (in terms of cost and performance) than the existing formulations, is a current challenge. In this work, nanocarriers composed of chitosan–tripolyphosphate (by ionic gelification approach) and poly-ε-caprolactone (PCL)–chitosan (by double-emulsion–solvent evaporation method) for thiametoxam insecticide were developed and characterized. Toxicological assessments using Raphidocelis subcapta, Artemia salina and Caernohabditis elegans were performed comparing PCL–chitosan nanoparticle and PCL–chitosan loaded thiamethoxam in comparison to commercial pesticide. The nanoparticles obtained from optimized conditions resulted in positive charged nanoparticles, with medium dispersity. The double-emulsion method resulted in smaller nanoparticles (313.5 ± 7 nm) and increased encapsulation efficiency (36.6 ± 0.2%) in comparison to chitosan–tripolyphosphate nanoparticles. The lower encapsulation efficiency was observed in chitosan–tripolyphosphate, impairing agricultural applications. The EC50 values (mg L−1) of Raphidocelis subcapitata and C. elegans obtained for poly-ε-caprolactone with thiamethoxam were 56.15 (18.91–131.21) and 66.07 (1.20–274.14), respectively, and poly-ε-caprolactone without thiamethoxam 94.26 (22.42–166.10) and 214.63 (139.08–494.3), respectively. No toxicity was found in Artemia salina. Our results indicate that nanoparticles (with and without thiamethoxam) were more toxic to soil organisms (C. elegan) than commercial formulations
Subject: Pesticidas
Country: Alemanha
Editor: Springer
Rights: Fechado
Identifier DOI: 10.1007/s40974-019-00138-1
Date Issue: 2019
Appears in Collections:IQ - Artigos e Outros Documentos

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.