Please use this identifier to cite or link to this item:
http://repositorio.unicamp.br/jspui/handle/REPOSIP/342859
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.CRUESP | UNIVERSIDADE ESTADUAL DE CAMPINAS | pt_BR |
dc.contributor.authorunicamp | Planas, Gabriela Del Valle | - |
dc.type | Artigo | pt_BR |
dc.title | Limits of the Stokes and Navier-Stokes equations in a punctured periodic domain | pt_BR |
dc.contributor.author | Chipot, M. | - |
dc.contributor.author | Droniou, J. | - |
dc.contributor.author | Planas, G. | - |
dc.contributor.author | Robinson, J.C. | - |
dc.contributor.author | Xue, W. | - |
dc.subject | Equações de Navier-Stokes | pt_BR |
dc.subject.otherlanguage | Navier-Stokes equations | pt_BR |
dc.description.abstract | We treat three problems on a two-dimensional "punctured periodic domain": we take ωr = (-L,L)2rK, where r > 0 and K is the closure of an open connected set that is star-shaped with respect to 0 and has a C1 boundary. We impose periodic boundary conditions on the boundary of ω = (-L,L)2, and Dirichlet boundary conditions on (rK). In this setting we consider the Poisson equation, the Stokes equations, and the time-dependent Navier-Stokes equations, all with a fixed forcing function f, and examine the behavior of solutions as r → 0. In all three cases we show convergence of the solutions to those of the limiting problem, i.e. the problem posed on all of ω with periodic boundary conditions | pt_BR |
dc.relation.ispartof | Analysis and Applications | pt_BR |
dc.relation.ispartofabbreviation | AA | pt_BR |
dc.publisher.city | Singapore | pt_BR |
dc.publisher.country | Singapura | pt_BR |
dc.publisher | World Scientific | pt_BR |
dc.date.issued | 2020 | - |
dc.language.iso | eng | pt_BR |
dc.description.volume | 18 | pt_BR |
dc.description.issuenumber | 2 | pt_BR |
dc.description.firstpage | 211 | pt_BR |
dc.description.lastpage | 235 | pt_BR |
dc.rights | Fechado | pt_BR |
dc.source | SCOPUS | pt_BR |
dc.identifier.issn | 0219-5305 | pt_BR |
dc.identifier.eissn | 1793-6861 | pt_BR |
dc.identifier.doi | 10.1142/S0219530519500118 | pt_BR |
dc.identifier.url | https://www.worldscientific.com/doi/10.1142/S0219530519500118 | pt_BR |
dc.date.available | 2020-06-07T20:13:28Z | - |
dc.date.accessioned | 2020-06-07T20:13:28Z | - |
dc.description.provenance | Submitted by Cintia Oliveira de Moura (cintiaom@unicamp.br) on 2020-06-07T20:13:28Z No. of bitstreams: 0. Added 1 bitstream(s) on 2020-09-03T11:55:56Z : No. of bitstreams: 1 2-s2.0-85069932689.pdf: 643140 bytes, checksum: a93063e7f4156eaa8e03db6139cbfd70 (MD5) | en |
dc.description.provenance | Made available in DSpace on 2020-06-07T20:13:28Z (GMT). No. of bitstreams: 0 Previous issue date: 2020 | en |
dc.identifier.uri | http://repositorio.unicamp.br/jspui/handle/REPOSIP/342859 | - |
dc.contributor.department | Departamento de Matemática | pt_BR |
dc.contributor.unidade | Instituto de Matemática, Estatística e Computação Científica | pt_BR |
dc.identifier.source | 2-s2.0-85069932689 | pt_BR |
dc.creator.orcid | 0000-0002-0647-4122 | pt_BR |
dc.type.form | Artigo | pt_BR |
Appears in Collections: | IMECC - Artigos e Outros Documentos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85069932689.pdf | 628.07 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.