Please use this identifier to cite or link to this item:
http://repositorio.unicamp.br/jspui/handle/REPOSIP/342812
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.CRUESP | UNIVERSIDADE ESTADUAL DE CAMPINAS | pt_BR |
dc.contributor.authorunicamp | Sousa, José Vanterler da Costa | - |
dc.contributor.authorunicamp | Oliveira, Edmundo Capelas de | - |
dc.type | Artigo | pt_BR |
dc.title | On the local M-derivative | pt_BR |
dc.contributor.author | Sousa, J. V. C. | - |
dc.contributor.author | de Oliveira, E. C. | - |
dc.subject | Equações diferenciais lineares | pt_BR |
dc.subject.otherlanguage | Linear differential equations | pt_BR |
dc.description.abstract | We denote a new differential operator by DM α,β(·), where the parameter a, associated with the order, is such that 0 < α < 1, β > 0 and M is used to denote that the function to be derived involves a Mittag-Leffler function with one parameter. This new derivative satisfies some properties of integer-order calculus, e.g. linearity, product rule, quotient rule, function composition and the chain rule. Besides as in the case of the Caputo derivative, the derivative of a constant is zero. Because Mittag-Leffler function is a natural generalization of the exponential function, we can extend some of the classical results, namely: Rolle's theorem, the mean-value theorem and its extension. We present the corresponding M-integral from which, as a natural consequence, new results emerge which can be interpreted as applications. Specifically, we generalize the inversion property of the fundamental theorem of calculus and prove a theorem associated with the classical integration by parts. Finally, we present an application involving linear differential equations by means of local M-derivative with some graphs | pt_BR |
dc.relation.ispartof | Progress in Fractional Differentiation and Applications | pt_BR |
dc.relation.ispartofabbreviation | Progr. fract. differ. appl. | pt_BR |
dc.publisher.city | New York, NY | pt_BR |
dc.publisher.country | Estados Unidos | pt_BR |
dc.publisher | Natural Sciences Publishing | pt_BR |
dc.date.issued | 2018 | - |
dc.language.iso | eng | pt_BR |
dc.description.volume | 4 | pt_BR |
dc.description.issuenumber | 4 | pt_BR |
dc.description.firstpage | 479 | pt_BR |
dc.description.lastpage | 492 | pt_BR |
dc.rights | Aberto | pt_BR |
dc.source | SCOPUS | pt_BR |
dc.identifier.issn | 2356-9336 | pt_BR |
dc.identifier.eissn | 2356-9344 | pt_BR |
dc.identifier.doi | 10.18576/pfda/040403 | pt_BR |
dc.identifier.url | http://www.naturalspublishing.com/ContIss.asp?IssID=545 | pt_BR |
dc.date.available | 2020-06-05T19:05:54Z | - |
dc.date.accessioned | 2020-06-05T19:05:54Z | - |
dc.description.provenance | Submitted by Sanches Olivia (olivias@unicamp.br) on 2020-06-05T19:05:54Z No. of bitstreams: 0. Added 1 bitstream(s) on 2020-09-03T11:55:53Z : No. of bitstreams: 1 2-s2.0-85054424493.pdf: 240411 bytes, checksum: cf6d166742608917adce62a478bd3420 (MD5) | en |
dc.description.provenance | Made available in DSpace on 2020-06-05T19:05:54Z (GMT). No. of bitstreams: 0 Previous issue date: 2019 | en |
dc.identifier.uri | http://repositorio.unicamp.br/jspui/handle/REPOSIP/342812 | - |
dc.contributor.department | sem informação | pt_BR |
dc.contributor.department | Departamento de Matemática | pt_BR |
dc.contributor.unidade | Instituto de Matemática, Estatística e Computação Científica | pt_BR |
dc.contributor.unidade | Instituto de Matemática, Estatística e Computação Científica | pt_BR |
dc.subject.keyword | Local M-derivative | pt_BR |
dc.subject.keyword | Local M-differential equation | pt_BR |
dc.subject.keyword | M-integral | pt_BR |
dc.subject.keyword | Mittag-Leffler function | pt_BR |
dc.identifier.source | 2-s2.0-85054424493 | pt_BR |
dc.creator.orcid | 0000-0002-6986-948X | pt_BR |
dc.creator.orcid | 0000-0001-9661-0281 | pt_BR |
dc.type.form | Artigo | pt_BR |
dc.description.otherSponsorship | sem informação | pt_BR |
Appears in Collections: | IMECC - Artigos e Outros Documentos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85054424493.pdf | 234.78 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.