Please use this identifier to cite or link to this item:
http://repositorio.unicamp.br/jspui/handle/REPOSIP/342756
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.CRUESP | UNIVERSIDADE ESTADUAL DE CAMPINAS | pt_BR |
dc.identifier.isbn | 978-1-7281-4569-3; 978-1-7281-4570-9 | pt_BR |
dc.contributor.authorunicamp | Zanini, Rafael Anicet | - |
dc.contributor.authorunicamp | Colombini, Esther Luna | - |
dc.type | Artigo | pt_BR |
dc.title | Parkinson's disease EMG signal prediction using neural networks | pt_BR |
dc.contributor.author | Zanini, R.A. | - |
dc.contributor.author | Colombini, E.L. | - |
dc.contributor.author | De Castro, M.C.F. | - |
dc.subject | Doença de Parkinson | pt_BR |
dc.subject | Redes neurais recorrentes | pt_BR |
dc.subject.otherlanguage | Parkinson disease | pt_BR |
dc.subject.otherlanguage | Recurrent neural networks | pt_BR |
dc.description.abstract | This paper proposes a comparison between different neural network models, using multilayer perceptron (MLPs) and recurrent neural network (RNN) models, for predicting Parkinson's disease electromyography (EMG) signals, to anticipate resulting resting tremor patterns. The experimental results indicate that the proposed models can adapt to different frequencies and amplitudes of tremor, and provide reasonable predictions for both EMG envelopes and EMG raw signals. Therefore, one could use these models as input for a control strategy for functional electrical stimulation (FES) devices used on tremor suppression, by dynamically predicting and improving FES control parameters based on tremor forecast. | pt_BR |
dc.relation.ispartof | IEEE international conference on systems, man, and cybernetics. Conference proceedings | pt_BR |
dc.publisher.city | New York, NY | pt_BR |
dc.publisher.country | Estados Unidos | pt_BR |
dc.publisher | Institute of Electrical and Electronics Engineers | pt_BR |
dc.date.issued | 2019 | - |
dc.date.monthofcirculation | Nov. | pt_BR |
dc.language.iso | eng | pt_BR |
dc.description.firstpage | 2446 | pt_BR |
dc.description.lastpage | 2453 | pt_BR |
dc.rights | Fechado | pt_BR |
dc.source | Scopus | pt_BR |
dc.identifier.issn | 1062-922X | pt_BR |
dc.identifier.eissn | 2577-1655 | pt_BR |
dc.identifier.doi | 10.1109/SMC.2019.8914553 | pt_BR |
dc.identifier.url | https://ieeexplore.ieee.org/document/8914553 | pt_BR |
dc.date.available | 2020-06-05T14:06:14Z | - |
dc.date.accessioned | 2020-06-05T14:06:14Z | - |
dc.description.provenance | Submitted by Bruna Maria Campos da Cunha (bcampos@unicamp.br) on 2020-06-05T14:06:14Z No. of bitstreams: 0. Added 1 bitstream(s) on 2020-09-03T11:55:48Z : No. of bitstreams: 1 2-s2.0-85076792642.pdf: 617323 bytes, checksum: 709d1085f66e13d28b09403862a9644e (MD5) | en |
dc.description.provenance | Made available in DSpace on 2020-06-05T14:06:14Z (GMT). No. of bitstreams: 0 Previous issue date: 2019 | en |
dc.identifier.uri | http://repositorio.unicamp.br/jspui/handle/REPOSIP/342756 | - |
dc.description.conferencenome | IEEE International Conference on Systems, Man and Cybernetics | pt_BR |
dc.contributor.department | Sem informação | pt_BR |
dc.contributor.department | Departamento de Sistemas de Informação | pt_BR |
dc.contributor.unidade | Instituto de Computação | pt_BR |
dc.contributor.unidade | Instituto de Computação | pt_BR |
dc.subject.keyword | Forecasting | pt_BR |
dc.subject.keyword | Functional electric stimulation | pt_BR |
dc.subject.keyword | Multilayer neural networks | pt_BR |
dc.subject.keyword | Neurodegenerative diseases | pt_BR |
dc.subject.keyword | Signal filtering and prediction | pt_BR |
dc.subject.keyword | Control parameters | pt_BR |
dc.subject.keyword | Control strategies | pt_BR |
dc.subject.keyword | Different frequency | pt_BR |
dc.subject.keyword | Functional electrical stimulation | pt_BR |
dc.subject.keyword | Neural network model | pt_BR |
dc.subject.keyword | Raw signals | pt_BR |
dc.identifier.source | 2-s2.0-85076792642 | pt_BR |
dc.creator.orcid | orcid.org/0000-0002-8981-6844 | pt_BR |
dc.creator.orcid | orcid.org/0000-0003-0467-3133 | pt_BR |
dc.type.form | Artigo de evento | pt_BR |
dc.identifier.articleid | 8914553 | pt_BR |
Appears in Collections: | IC - Artigos e Outros Documentos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85076792642.pdf | 602.85 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.