Please use this identifier to cite or link to this item:
http://repositorio.unicamp.br/jspui/handle/REPOSIP/342612
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.CRUESP | UNIVERSIDADE ESTADUAL DE CAMPINAS | pt_BR |
dc.contributor.authorunicamp | Oliveira, Edmundo Capelas de | - |
dc.type | Artigo | pt_BR |
dc.title | The fractional space–time radial diffusion equation in terms of the Fox's H-function | pt_BR |
dc.contributor.author | Costa, F.S. | - |
dc.contributor.author | Oliveira, D.S. | - |
dc.contributor.author | Rodrigues, F.G. | - |
dc.contributor.author | de Oliveira, E.C. | - |
dc.subject | Equações diferenciais parciais | pt_BR |
dc.subject | Equação de difusão fracionária | pt_BR |
dc.subject.otherlanguage | Partial differential equations | pt_BR |
dc.subject.otherlanguage | Fractional diffusion equation | pt_BR |
dc.description.abstract | Based on a generalization of the Hilfer–Katugampola fractional operator, recently introduced, and the Weyl fractional derivative, which are responsible to describe the memory and distance effects, respectively, we investigate the anomalous diffusion in processes in which fractional radial differential equation plays an important and fundamental rule. Similarity solutions for this fractional space–time radial equation are considered. These solutions are presented in terms of the Fox's H-function. As an application, we present and discuss a special case in fractal Hausdorff dimension | pt_BR |
dc.relation.ispartof | Physica A: statistical mechanics and its applications | pt_BR |
dc.publisher.city | Amsterdam | pt_BR |
dc.publisher.country | Paises baixos | pt_BR |
dc.publisher | Elsevier | pt_BR |
dc.date.issued | 2020 | - |
dc.date.monthofcirculation | Feb. | pt_BR |
dc.language.iso | eng | pt_BR |
dc.description.volume | 515 | pt_BR |
dc.description.firstpage | 403 | pt_BR |
dc.description.lastpage | 418 | pt_BR |
dc.rights | Fechado | pt_BR |
dc.source | SCOPUS | pt_BR |
dc.identifier.issn | 0378-4371 | pt_BR |
dc.identifier.eissn | 1873-2119 | pt_BR |
dc.identifier.doi | 10.1016/j.physa.2018.10.002 | pt_BR |
dc.identifier.url | https://www.sciencedirect.com/science/article/pii/S0378437118313396 | pt_BR |
dc.date.available | 2020-06-03T19:14:05Z | - |
dc.date.accessioned | 2020-06-03T19:14:05Z | - |
dc.description.provenance | Submitted by Cintia Oliveira de Moura (cintiaom@unicamp.br) on 2020-06-03T19:14:05Z No. of bitstreams: 0. Added 1 bitstream(s) on 2020-09-03T11:55:36Z : No. of bitstreams: 1 2-s2.0-85054458317.pdf: 518543 bytes, checksum: a157e5fdf30771538080da89e6e41289 (MD5) | en |
dc.description.provenance | Made available in DSpace on 2020-06-03T19:14:05Z (GMT). No. of bitstreams: 0 Previous issue date: 2020 | en |
dc.identifier.uri | http://repositorio.unicamp.br/jspui/handle/REPOSIP/342612 | - |
dc.contributor.department | Departamento de Matemática Aplicada | pt_BR |
dc.contributor.unidade | Instituto de Matemática, Estatística e Computação Científica | pt_BR |
dc.subject.keyword | Anomalous diffusion | pt_BR |
dc.subject.keyword | Hausdorff dimension | pt_BR |
dc.identifier.source | 2-s2.0-85054458317 | pt_BR |
dc.creator.orcid | 0000-0001-9661-0281 | pt_BR |
dc.type.form | Artigo | pt_BR |
Appears in Collections: | IMECC - Artigos e Outros Documentos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85054458317.pdf | 506.39 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.