Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/342612
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE ESTADUAL DE CAMPINASpt_BR
dc.contributor.authorunicampOliveira, Edmundo Capelas de-
dc.typeArtigopt_BR
dc.titleThe fractional space–time radial diffusion equation in terms of the Fox's H-functionpt_BR
dc.contributor.authorCosta, F.S.-
dc.contributor.authorOliveira, D.S.-
dc.contributor.authorRodrigues, F.G.-
dc.contributor.authorde Oliveira, E.C.-
dc.subjectEquações diferenciais parciaispt_BR
dc.subjectEquação de difusão fracionáriapt_BR
dc.subject.otherlanguagePartial differential equationspt_BR
dc.subject.otherlanguageFractional diffusion equationpt_BR
dc.description.abstractBased on a generalization of the Hilfer–Katugampola fractional operator, recently introduced, and the Weyl fractional derivative, which are responsible to describe the memory and distance effects, respectively, we investigate the anomalous diffusion in processes in which fractional radial differential equation plays an important and fundamental rule. Similarity solutions for this fractional space–time radial equation are considered. These solutions are presented in terms of the Fox's H-function. As an application, we present and discuss a special case in fractal Hausdorff dimensionpt_BR
dc.relation.ispartofPhysica A: statistical mechanics and its applicationspt_BR
dc.publisher.cityAmsterdampt_BR
dc.publisher.countryPaises baixospt_BR
dc.publisherElsevierpt_BR
dc.date.issued2020-
dc.date.monthofcirculationFeb.pt_BR
dc.language.isoengpt_BR
dc.description.volume515pt_BR
dc.description.firstpage403pt_BR
dc.description.lastpage418pt_BR
dc.rightsFechadopt_BR
dc.sourceSCOPUSpt_BR
dc.identifier.issn0378-4371pt_BR
dc.identifier.eissn1873-2119pt_BR
dc.identifier.doi10.1016/j.physa.2018.10.002pt_BR
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0378437118313396pt_BR
dc.date.available2020-06-03T19:14:05Z-
dc.date.accessioned2020-06-03T19:14:05Z-
dc.description.provenanceSubmitted by Cintia Oliveira de Moura (cintiaom@unicamp.br) on 2020-06-03T19:14:05Z No. of bitstreams: 0. Added 1 bitstream(s) on 2020-09-03T11:55:36Z : No. of bitstreams: 1 2-s2.0-85054458317.pdf: 518543 bytes, checksum: a157e5fdf30771538080da89e6e41289 (MD5)en
dc.description.provenanceMade available in DSpace on 2020-06-03T19:14:05Z (GMT). No. of bitstreams: 0 Previous issue date: 2020en
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/342612-
dc.contributor.departmentDepartamento de Matemática Aplicadapt_BR
dc.contributor.unidadeInstituto de Matemática, Estatística e Computação Científicapt_BR
dc.subject.keywordAnomalous diffusionpt_BR
dc.subject.keywordHausdorff dimensionpt_BR
dc.identifier.source2-s2.0-85054458317pt_BR
dc.creator.orcid0000-0001-9661-0281pt_BR
dc.type.formArtigopt_BR
Appears in Collections:IMECC - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-85054458317.pdf506.39 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.