Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/342397
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE ESTADUAL DE CAMPINASpt_BR
dc.contributor.authorunicampPanthee, Mahendra Prasad-
dc.typeArtigopt_BR
dc.titleOn the well-posedness, ill-posedness and norm-inflation for a higher order water wave model on a periodic domainpt_BR
dc.contributor.authorCarvajal, X.-
dc.contributor.authorPanthee, M.-
dc.contributor.authorPastrán, R.-
dc.subjectProblemas de valor inicialpt_BR
dc.subjectSobolev, Espaços dept_BR
dc.subject.otherlanguageInitial value problemspt_BR
dc.subject.otherlanguageSobolev spacespt_BR
dc.description.abstractIn this work we are interested in the well-posedness issues for the initial value problem associated with a higher order water wave model posed on a periodic domain T. We derive some multilinear estimates and use them in the contraction mapping argument to prove the local well-posedness for initial data in the periodic Sobolev space Hs(T), s≥1. With some restriction on the parameters appeared in the model, we use the conserved quantity to obtain the global well-posedness for given data with Sobolev regularity s≥2. Also, we use splitting argument to improve the global well-posedness result in Hs(T) for 1≤s<2. Well-posedness result obtained in this work is sharp in the sense that the flow-map that takes initial data to the solution cannot be continuous for given data in Hs(T), s<1. Finally, we prove a norm-inflation result by showing that the solution corresponding to a smooth initial data may have arbitrarily large Hs(T) norm, with s<1, for arbitrarily short timept_BR
dc.relation.ispartofNonlinear analysis: theory, methods & applicationspt_BR
dc.relation.ispartofabbreviationNonlinear anal.: theory methods appl.pt_BR
dc.publisher.cityOxfordpt_BR
dc.publisher.countryReino Unidopt_BR
dc.publisherElsevierpt_BR
dc.date.issued2020-
dc.date.monthofcirculationMar.pt_BR
dc.language.isoengpt_BR
dc.description.volume192pt_BR
dc.rightsFechadopt_BR
dc.sourceSCOPUSpt_BR
dc.identifier.issn0362-546Xpt_BR
dc.identifier.eissn1873-5215pt_BR
dc.identifier.doi10.1016/j.na.2019.111713pt_BR
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0362546X19303669pt_BR
dc.date.available2020-06-01T20:17:34Z-
dc.date.accessioned2020-06-01T20:17:34Z-
dc.description.provenanceSubmitted by Cintia Oliveira de Moura (cintiaom@unicamp.br) on 2020-06-01T20:17:34Z No. of bitstreams: 0. Added 1 bitstream(s) on 2020-09-03T11:56:32Z : No. of bitstreams: 1 2-s2.0-85075909441.pdf: 915394 bytes, checksum: ff03df902a1d47d69c7f48ab6f110931 (MD5)en
dc.description.provenanceMade available in DSpace on 2020-06-01T20:17:34Z (GMT). No. of bitstreams: 0 Previous issue date: 2020en
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/342397-
dc.contributor.departmentDepartamento de Matemáticapt_BR
dc.contributor.unidadeInstituto de Matemática Estatística e Ciência da Computaçãopt_BR
dc.subject.keywordGlobal well-posednesspt_BR
dc.subject.keywordNorm-inflationpt_BR
dc.identifier.source2-s2.0-85075909441pt_BR
dc.creator.orcid0000-0002-2003-8490pt_BR
dc.type.formArtigopt_BR
dc.identifier.articleid111713pt_BR
Appears in Collections:IMECC - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-85075909441.pdf893.94 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.