Please use this identifier to cite or link to this item:
http://repositorio.unicamp.br/jspui/handle/REPOSIP/342163
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.CRUESP | UNIVERSIDADE ESTADUAL DE CAMPINAS | pt_BR |
dc.contributor.authorunicamp | Costa, Daniel dos Santos | - |
dc.contributor.authorunicamp | Teruel Mederos, Barbara Janet | - |
dc.type | Artigo | pt_BR |
dc.title | IRIS-GRAPE: an approach for prediction of quality attributes in vineyard grapes inspired by iris biometric recognition | pt_BR |
dc.contributor.author | dos Santos, Costa D. | - |
dc.contributor.author | de Oliveira, Neto R.F. | - |
dc.contributor.author | Ramos, R.P. | - |
dc.contributor.author | da Silva, Oliveira V.G. | - |
dc.contributor.author | Teruel, B. | - |
dc.subject | Biometria | pt_BR |
dc.subject | Segmentação de imagens | pt_BR |
dc.subject.otherlanguage | Biometry | pt_BR |
dc.subject.otherlanguage | Image segmentation | pt_BR |
dc.description.abstract | The determination of the period of harvest is essential in the vineyard. For that, attributes of quality such as Total Soluble Solids (TSS) and phenolic compounds are constantly monitored along the maturation. This work proposes a new non-destructive approach for prediction of TSS, total anthocyanins and yellow flavonoids using RGB images, called IRIS-GRAPE. It is inspired by the process of biometric recognition using the iris. In order to validate the proposed approach, a study comparing its performance with the traditional method was performed, using the average of RGB pixel values of the region of interest (ROI) as input variables for a multiple linear regression. The study used two performance evaluation metrics: the correlation coefficient (rP) and the mean square error (MSE). In order to compare the performance differences between the proposed approach, IRIS-GRAPE, and the traditional approach, hypothesis tests were done. The results show that the proposed approach has a superior performance than the traditional method with a confidence level of 95% | pt_BR |
dc.relation.ispartof | Computers and electronics in agriculture | pt_BR |
dc.relation.ispartofabbreviation | Comput. electron. agric. | pt_BR |
dc.publisher.city | Amsterdam | pt_BR |
dc.publisher.country | Países Baixos | pt_BR |
dc.publisher | Elsevier | pt_BR |
dc.date.issued | 2020 | - |
dc.date.monthofcirculation | Jan. | pt_BR |
dc.language.iso | eng | pt_BR |
dc.description.volume | 168 | pt_BR |
dc.rights | Fechado | pt_BR |
dc.source | SCOPUS | pt_BR |
dc.identifier.issn | 0168-1699 | pt_BR |
dc.identifier.eissn | 1872-7107 | pt_BR |
dc.identifier.doi | 10.1016/j.compag.2019.105140 | pt_BR |
dc.identifier.url | https://www.sciencedirect.com/science/article/pii/S0168169918315436 | pt_BR |
dc.date.available | 2020-05-28T16:28:03Z | - |
dc.date.accessioned | 2020-05-28T16:28:03Z | - |
dc.description.provenance | Submitted by Cintia Oliveira de Moura (cintiaom@unicamp.br) on 2020-05-28T16:28:03Z No. of bitstreams: 0. Added 1 bitstream(s) on 2020-08-27T19:15:30Z : No. of bitstreams: 1 2-s2.0-85076251346.pdf: 1527920 bytes, checksum: 083dafcdcb9ad5584aae732a990bf7b4 (MD5) | en |
dc.description.provenance | Made available in DSpace on 2020-05-28T16:28:03Z (GMT). No. of bitstreams: 0 Previous issue date: 2020 | en |
dc.identifier.uri | http://repositorio.unicamp.br/jspui/handle/REPOSIP/342163 | - |
dc.contributor.unidade | Faculdade de Engenharia Agrícola | pt_BR |
dc.contributor.unidade | Faculdade de Engenharia Agrícola | pt_BR |
dc.subject.keyword | Linear regression | pt_BR |
dc.subject.keyword | Mean square error | pt_BR |
dc.subject.keyword | Nondestructive examination | pt_BR |
dc.subject.keyword | Iris recognition | pt_BR |
dc.identifier.source | 2-s2.0-85076251346 | pt_BR |
dc.creator.orcid | 0000-0001-7703-3183 | pt_BR |
dc.creator.orcid | 0000-0002-5102-6716 | pt_BR |
dc.type.form | Artigo | pt_BR |
dc.identifier.articleid | 105140 | pt_BR |
Appears in Collections: | FEAGRI - Artigos e Outros Documentos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85076251346.pdf | 1.49 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.