Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/342100
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE ESTADUAL DE CAMPINASpt_BR
dc.contributor.authorunicampDevloo, Philippe Remy Bernard-
dc.contributor.authorunicampGomes, Sonia Maria-
dc.typeArtigopt_BR
dc.titleEnriched two dimensional mixed finite element models for linear elasticity with weak stress symmetrypt_BR
dc.contributor.authorDevloo, P.R.B.-
dc.contributor.authorGomes, S.M.-
dc.contributor.authorQuinelato, T.O.-
dc.contributor.authorTian S.-
dc.subjectElasticidadept_BR
dc.subjectMétodo dos elementos finitospt_BR
dc.subject.otherlanguageElasticitypt_BR
dc.subject.otherlanguageFinite element methodpt_BR
dc.description.abstractThe purpose of this article is to derive and analyze new discrete mixed approximations for linear elasticity problems with weak stress symmetry. These approximations are based on the application of enriched versions of classic Poisson-compatible spaces, for stress and displacement variables, and/or on enriched Stokes-compatible space configurations, for the choice of rotation spaces used to weakly enforce stress symmetry. Accordingly, the stress space has to be adapted to ensure stability. Such enrichment procedures are done via space increments with extra bubble functions, which have their support on a single element (in the case of H1-conforming approximations) or with vanishing normal components over element edges (in the case of H(div)-conforming spaces). The advantage of using bubbles as stabilization corrections relies on the fact that all extra degrees of freedom can be condensed, in a way that the number of equations to be solved and the matrix structure are not affected. Enhanced approximations are observed when using the resulting enriched space configurations, which may have different orders of accuracy for the different variables. A general error analysis is derived in order to identify the contribution of each kind of bubble increment on the accuracy of the variables, individually. The use of enriched Poisson spaces improves the rates of convergence of stress divergence and displacement variables. Stokes enhancement by bubbles contributes to equilibrate the accuracy of weak stress symmetry enforcement with the stress approximation order, reaching the maximum rate given by the normal traces (which are not affected)pt_BR
dc.relation.ispartofComputers & Mathematics with Applications: an international journalpt_BR
dc.publisher.cityOxfordpt_BR
dc.publisher.countryReino Unidopt_BR
dc.publisherElsevierpt_BR
dc.date.issued2020-
dc.date.monthofcirculationMaypt_BR
dc.language.isoengpt_BR
dc.description.volume79pt_BR
dc.description.issuenumber9pt_BR
dc.description.firstpage2678pt_BR
dc.description.lastpage2700pt_BR
dc.rightsFechadopt_BR
dc.sourceSCOPUSpt_BR
dc.identifier.issn0898-1221pt_BR
dc.identifier.eissn1873-7668pt_BR
dc.identifier.doi10.1016/j.camwa.2019.12.004pt_BR
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0898122119305620pt_BR
dc.date.available2020-05-27T13:47:25Z-
dc.date.accessioned2020-05-27T13:47:25Z-
dc.description.provenanceSubmitted by Cintia Oliveira de Moura (cintiaom@unicamp.br) on 2020-05-27T13:47:25Z No. of bitstreams: 0. Added 1 bitstream(s) on 2020-08-27T19:15:36Z : No. of bitstreams: 1 2-s2.0-85076832781.pdf: 838041 bytes, checksum: 7a3ad27e458d60cd95dd870800508707 (MD5)en
dc.description.provenanceMade available in DSpace on 2020-05-27T13:47:25Z (GMT). No. of bitstreams: 0 Previous issue date: 2020en
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/342100-
dc.contributor.departmentDepartamento de Construção Civilpt_BR
dc.contributor.departmentDepartamento de Matemática Aplicadapt_BR
dc.contributor.unidadeFaculdade de Engenharia Civil, Arquitetura e Urbanismopt_BR
dc.contributor.unidadeInstituto de Matemática, Estatística e Computação Científicapt_BR
dc.subject.keywordLinear elasticity problemspt_BR
dc.subject.keywordStress and displacementspt_BR
dc.identifier.source2-s2.0-85076832781pt_BR
dc.creator.orcid0000-0002-8225-1107pt_BR
dc.creator.orcidsem informaçãopt_BR
dc.type.formArtigopt_BR
Appears in Collections:FEC - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-85076832781.pdf818.4 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.