Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/341963
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE ESTADUAL DE CAMPINASpt_BR
dc.contributor.authorunicampFerreira, Lucas Catão de Freitas-
dc.typeArtigopt_BR
dc.titleBilinear estimates and uniqueness for Navier-Stokes equations in critical Besov-type spacespt_BR
dc.contributor.authorFerreira, L.C.F.-
dc.contributor.authorPérez-López, J.E.-
dc.subjectEspaços de Besovpt_BR
dc.subjectNavier-Stokes, Equações dept_BR
dc.subject.otherlanguageBesov spacespt_BR
dc.subject.otherlanguageNavier-Stokes equationspt_BR
dc.description.abstractWe show bilinear estimates for the Navier–Stokes equations in critical Besov-weak-Morrey (BWM) spaces that contain the so-called Besov–Morrey (BM) spaces. Our estimates employ only the norm of the natural persistence space and do not use auxiliary norms like, e.g., Kato time-weighted norms. As a corollary, we obtain the uniqueness of mild solutions in the class of continuous functions from [0 , ∞) to critical BWM-spaces and, in particular, to BM-spaces. For our purposes, we need to show interpolation properties, heat semigroup estimates, and a characterization of preduals (of BWM-spaces) that are Besov-type spaces based on Lorentz-block ones. Another ingredient is a product estimate in our setting.pt_BR
dc.relation.ispartofAnnali di matematica pura ed applicatapt_BR
dc.relation.ispartofabbreviationAnn. mat. pura appl.pt_BR
dc.publisher.cityHeidelbergpt_BR
dc.publisher.countryAlemanhapt_BR
dc.publisherSpringerpt_BR
dc.date.issued2019-
dc.date.monthofcirculationJunept_BR
dc.language.isoengpt_BR
dc.description.volume199pt_BR
dc.rightsFechadopt_BR
dc.sourceScopuspt_BR
dc.identifier.issn0373-3114pt_BR
dc.identifier.eissn1618-1891pt_BR
dc.identifier.doi10.1007/s10231-019-00883-4pt_BR
dc.identifier.urlhttps://link.springer.com/article/10.1007/s10231-019-00883-4pt_BR
dc.description.sponsorshipCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESpt_BR
dc.description.sponsorshipCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQpt_BR
dc.description.sponsorshipFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPpt_BR
dc.description.sponsordocumentnumberSem informaçãopt_BR
dc.description.sponsordocumentnumberSem informaçãopt_BR
dc.description.sponsordocumentnumberSem informaçãopt_BR
dc.date.available2020-05-21T20:35:01Z-
dc.date.accessioned2020-05-21T20:35:01Z-
dc.description.provenanceSubmitted by Bruna Maria Campos da Cunha (bcampos@unicamp.br) on 2020-05-21T20:35:01Z No. of bitstreams: 0. Added 1 bitstream(s) on 2020-08-27T19:18:03Z : No. of bitstreams: 1 2-s2.0-85068176529.pdf: 482332 bytes, checksum: 214361f93a187a3972d6986fc35227c0 (MD5)en
dc.description.provenanceMade available in DSpace on 2020-05-21T20:35:01Z (GMT). No. of bitstreams: 0 Previous issue date: 2019en
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/341963-
dc.contributor.departmentDepartamento de Matemáticapt_BR
dc.contributor.unidadeInstituto de Matemática, Estatística e Computação Científicapt_BR
dc.identifier.source2-s2.0-85068176529pt_BR
dc.creator.orcidorcid.org/0000-0001-7036-9741pt_BR
dc.type.formArtigopt_BR
Appears in Collections:IMECC - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-85068176529.pdf471.03 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.