Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/341857
Type: Artigo
Title: A framework for quality control of corpus callosum segmentation in large-scale studies
Author: Herrera, W.G.
Pereira, M.
Bento, M.
Lapa, A.T.
Appenzeller, S.
Rittner, L.
Abstract: The corpus callosum (CC) is the largest white matter structure in the brain, responsible for the interconnection of the brain hemispheres. Its segmentation is a required preliminary step for any posterior analysis, such as parcellation, registration, and feature extraction. In this context, the quality control (QC) of CC segmentation allows studies on large datasets with no human interaction, and the proper usage of available automated and semi-automated algorithms. New method: We propose a framework for QC of CC segmentation based on the shape signature, computed at 49 distinct resolutions. At each resolution, a support vector machine (SVM) classifier was trained, generating 49 individual classifiers. Then, a disagreement metric was used to cluster these individual classifiers. The final ensemble was constructed by selecting one representation from each cluster. Results: The proposed framework achieved an area under the curve (AUC) metric of 98.25% on the test set (207 subjects) employing an ensemble composed of 12 components. This ensemble outperformed all individual classifiers. Comparison with existing methods: To the best of our knowledge, this is the first approach to assess quality of CC segmentations on large datasets without the need for a ground-truth. Conclusions: The shape descriptor is robust and versatile, describing the segmentation at different resolutions. The selection of classifiers and the disagreement measure lead to an ensemble composed of high-quality and heterogeneous classifiers, ensuring an optimal trade-off between the ensemble size and high AUC
Subject: Imagem de ressonância magnética
Country: Países Baixos
Editor: Elsevier
Rights: Fechado
Identifier DOI: 10.1016/j.jneumeth.2020.108593
Address: https://www.sciencedirect.com/science/article/pii/S0165027020300157
Date Issue: 2020
Appears in Collections:FCM - Artigos e Outros Documentos
FEEC - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-85078408203.pdf3.22 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.