Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/341818
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE ESTADUAL DE CAMPINASpt_BR
dc.identifier.isbn978-3-319-96754-7pt_BR
dc.contributor.authorunicampRuffino, Paulo Regis Caron-
dc.typeOutro documentopt_BR
dc.titleA strong averaging principle for Lévy diffusions in foliated spaces with unbounded leavespt_BR
dc.contributor.authorda Costa, P.H.-
dc.contributor.authorHögele, M.A.-
dc.contributor.authorRuffino, P.R.-
dc.subjectLévy, Processos dept_BR
dc.subjectPrincípio da médiapt_BR
dc.subject.otherlanguageLévy processespt_BR
dc.subject.otherlanguageAveraging principlept_BR
dc.description.abstractThis article extends a strong averaging principle for Lévy diffusions which live on the leaves of a foliated manifold subject to small transversal Lévy type perturbation to the case of non-compact leaves. The main result states that the existence of p-th moments of the foliated Lévy diffusion for p⩾ 2 and an ergodic convergence of its coefficients in Lp implies the strong Lp convergence of the fast perturbed motion on the time scale t∕ε to the system driven by the averaged coefficients. In order to compensate the non-compactness of the leaves we use an estimate of the dynamical system for each of the increments of the canonical Marcus equation derived in da Costa and Högele (Potential Anal 47(3):277–311, 2017), the boundedness of the coefficients in Lp and a nonlinear Gronwall-Bihari type estimate. The price for the non-compactness are slower rates of convergence, given as p-dependent powers of ε strictly smaller than 1∕4.pt_BR
dc.relation.ispartofUnderstanding complex systemspt_BR
dc.publisher.cityHeidelbergpt_BR
dc.publisher.countryAlemanhapt_BR
dc.publisherSpringerpt_BR
dc.date.issued2018-
dc.date.monthofcirculationNov.pt_BR
dc.language.isoengpt_BR
dc.description.firstpage283pt_BR
dc.description.lastpage311pt_BR
dc.rightsFechadopt_BR
dc.sourceScopuspt_BR
dc.identifier.issn1860-0832pt_BR
dc.identifier.eissn1860-0840pt_BR
dc.identifier.doi10.1007/978-3-319-96755-4_16pt_BR
dc.identifier.urlhttps://link.springer.com/chapter/10.1007/978-3-319-96755-4_16pt_BR
dc.date.available2020-05-20T18:20:43Z-
dc.date.accessioned2020-05-20T18:20:43Z-
dc.description.provenanceSubmitted by Bruna Maria Campos da Cunha (bcampos@unicamp.br) on 2020-05-20T18:20:43Z No. of bitstreams: 0. Added 1 bitstream(s) on 2020-08-27T19:17:47Z : No. of bitstreams: 1 2-s2.0-85058949748.pdf: 508957 bytes, checksum: 746261b2e51555df16271970b59ff14b (MD5)en
dc.description.provenanceMade available in DSpace on 2020-05-20T18:20:43Z (GMT). No. of bitstreams: 0 Previous issue date: 2018en
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/341818-
dc.contributor.departmentDepartamento de Matemáticapt_BR
dc.contributor.unidadeInstituto de Matemática, Estatística e Computação Científicapt_BR
dc.subject.keywordDifusões de Lévypt_BR
dc.identifier.source2-s2.0-85058949748pt_BR
dc.creator.orcidorcid.org/0000-0002-6524-2508pt_BR
dc.type.formCapítulo de livropt_BR
Appears in Collections:IMECC - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-85058949748.pdf497.03 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.