Please use this identifier to cite or link to this item:
http://repositorio.unicamp.br/jspui/handle/REPOSIP/341818
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.CRUESP | UNIVERSIDADE ESTADUAL DE CAMPINAS | pt_BR |
dc.identifier.isbn | 978-3-319-96754-7 | pt_BR |
dc.contributor.authorunicamp | Ruffino, Paulo Regis Caron | - |
dc.type | Outro documento | pt_BR |
dc.title | A strong averaging principle for Lévy diffusions in foliated spaces with unbounded leaves | pt_BR |
dc.contributor.author | da Costa, P.H. | - |
dc.contributor.author | Högele, M.A. | - |
dc.contributor.author | Ruffino, P.R. | - |
dc.subject | Lévy, Processos de | pt_BR |
dc.subject | Princípio da média | pt_BR |
dc.subject.otherlanguage | Lévy processes | pt_BR |
dc.subject.otherlanguage | Averaging principle | pt_BR |
dc.description.abstract | This article extends a strong averaging principle for Lévy diffusions which live on the leaves of a foliated manifold subject to small transversal Lévy type perturbation to the case of non-compact leaves. The main result states that the existence of p-th moments of the foliated Lévy diffusion for p⩾ 2 and an ergodic convergence of its coefficients in Lp implies the strong Lp convergence of the fast perturbed motion on the time scale t∕ε to the system driven by the averaged coefficients. In order to compensate the non-compactness of the leaves we use an estimate of the dynamical system for each of the increments of the canonical Marcus equation derived in da Costa and Högele (Potential Anal 47(3):277–311, 2017), the boundedness of the coefficients in Lp and a nonlinear Gronwall-Bihari type estimate. The price for the non-compactness are slower rates of convergence, given as p-dependent powers of ε strictly smaller than 1∕4. | pt_BR |
dc.relation.ispartof | Understanding complex systems | pt_BR |
dc.publisher.city | Heidelberg | pt_BR |
dc.publisher.country | Alemanha | pt_BR |
dc.publisher | Springer | pt_BR |
dc.date.issued | 2018 | - |
dc.date.monthofcirculation | Nov. | pt_BR |
dc.language.iso | eng | pt_BR |
dc.description.firstpage | 283 | pt_BR |
dc.description.lastpage | 311 | pt_BR |
dc.rights | Fechado | pt_BR |
dc.source | Scopus | pt_BR |
dc.identifier.issn | 1860-0832 | pt_BR |
dc.identifier.eissn | 1860-0840 | pt_BR |
dc.identifier.doi | 10.1007/978-3-319-96755-4_16 | pt_BR |
dc.identifier.url | https://link.springer.com/chapter/10.1007/978-3-319-96755-4_16 | pt_BR |
dc.date.available | 2020-05-20T18:20:43Z | - |
dc.date.accessioned | 2020-05-20T18:20:43Z | - |
dc.description.provenance | Submitted by Bruna Maria Campos da Cunha (bcampos@unicamp.br) on 2020-05-20T18:20:43Z No. of bitstreams: 0. Added 1 bitstream(s) on 2020-08-27T19:17:47Z : No. of bitstreams: 1 2-s2.0-85058949748.pdf: 508957 bytes, checksum: 746261b2e51555df16271970b59ff14b (MD5) | en |
dc.description.provenance | Made available in DSpace on 2020-05-20T18:20:43Z (GMT). No. of bitstreams: 0 Previous issue date: 2018 | en |
dc.identifier.uri | http://repositorio.unicamp.br/jspui/handle/REPOSIP/341818 | - |
dc.contributor.department | Departamento de Matemática | pt_BR |
dc.contributor.unidade | Instituto de Matemática, Estatística e Computação Científica | pt_BR |
dc.subject.keyword | Difusões de Lévy | pt_BR |
dc.identifier.source | 2-s2.0-85058949748 | pt_BR |
dc.creator.orcid | orcid.org/0000-0002-6524-2508 | pt_BR |
dc.type.form | Capítulo de livro | pt_BR |
Appears in Collections: | IMECC - Artigos e Outros Documentos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85058949748.pdf | 497.03 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.