Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/341571
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE ESTADUAL DE CAMPINASpt_BR
dc.contributor.authorunicampVarea, Carlos Augusto Bassani-
dc.contributor.authorunicampSan Martin, Luiz Antonio Barrera-
dc.typeArtigopt_BR
dc.titleInvariant generalized complex structures on flag manifoldspt_BR
dc.contributor.authorVarea, C.A.B.-
dc.contributor.authorSan Martin, L.A.B.-
dc.subjectLie, Grupos dept_BR
dc.subject.otherlanguageLie groupspt_BR
dc.description.abstractLet G be a complex semi-simple Lie group and form its maximal flag manifold F=G∕P=U∕T where P is a minimal parabolic subgroup, U a compact real form and T=U∩P a maximal torus of U. The aim of this paper is to study invariant generalized complex structures on F. We describe the invariant generalized almost complex structures on F and classify which one is integrable. The problem reduces to the study of invariant 4-dimensional generalized almost complex structures restricted to each root space, and for integrability we analyze the Nijenhuis operator for a triple of roots such that its sum is zero. We also conducted a study about twisted generalized complex structures. We define a new bracket ‘twisted’ by a closed 3-form Ω and also define the Nijenhuis operator twisted by Ω. We classify the Ω-integrable generalized complex structurept_BR
dc.relation.ispartofJournal of geometry and physicspt_BR
dc.publisher.cityAmsterdampt_BR
dc.publisher.countryPaíses Baixospt_BR
dc.publisherElsevierpt_BR
dc.date.issued2020-
dc.date.monthofcirculationApr.pt_BR
dc.language.isoengpt_BR
dc.description.volume150pt_BR
dc.rightsFechadopt_BR
dc.sourceSCOPUSpt_BR
dc.identifier.issn0393-0440pt_BR
dc.identifier.doi10.1016/j.geomphys.2020.103610pt_BR
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0393044020300164pt_BR
dc.description.sponsordocumentnumbersem informaçãopt_BR
dc.date.available2020-05-16T10:56:15Z-
dc.date.accessioned2020-05-16T10:56:15Z-
dc.description.provenanceSubmitted by Sanches Olivia (olivias@unicamp.br) on 2020-05-16T10:56:15Z No. of bitstreams: 0en
dc.description.provenanceMade available in DSpace on 2020-05-16T10:56:15Z (GMT). No. of bitstreams: 0 Previous issue date: 2020en
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/341571-
dc.contributor.departmentsem informaçãopt_BR
dc.contributor.departmentDepartamento de Matemáticapt_BR
dc.contributor.unidadeInstituto de Matemática, Estatística e Computação Científicapt_BR
dc.contributor.unidadeInstituto de Matemática, Estatística e Computação Científicapt_BR
dc.subject.keywordFlag manifoldspt_BR
dc.subject.keywordHomogeneous spacept_BR
dc.subject.keywordSemi-simplept_BR
dc.subject.keywordGeneralized complex structurespt_BR
dc.identifier.source2-s2.0-85078847954pt_BR
dc.creator.orcid0000-0003-2474-2327pt_BR
dc.creator.orcidsem informaçãopt_BR
dc.type.formArtigopt_BR
dc.identifier.articleid103610pt_BR
dc.description.otherSponsorshipsem informaçãopt_BR
Appears in Collections:IMECC - Artigos e Outros Documentos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.