Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/341449
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE ESTADUAL DE CAMPINASpt_BR
dc.contributor.authorunicampGomide, Otávio Marçal Leandro-
dc.contributor.authorunicampTeixeira, Marco Antonio-
dc.typeArtigopt_BR
dc.titleOn structural stability of 3D Filippov systems: a semi-local approachpt_BR
dc.contributor.authorGomide, O.M.L.-
dc.contributor.authorTeixeira, M.A.-
dc.subjectSistemas de Filippovpt_BR
dc.subject.otherlanguageFilippov systemspt_BR
dc.description.abstractThe main purpose of this work is to provide a non-local approach to study aspects of structural stability of 3D Filippov systems. We introduce a notion of semi-local structural stability which detects when a piecewise smooth vector field is robust around the entire switching manifold, as well as, provides a complete characterization of such systems. In particular, we present some methods in the qualitative theory of piecewise smooth vector fields, which make use of geometrical analysis of the foliations generated by their orbits. Such approach displays surprisingly rich dynamical behavior which is studied in detail in this work. It is worth mentioning that this subject has not been treated in dimensions higher than two from a non-local point of view, and we hope that the approach adopted herein contributes to the understanding of structural stability for piecewise-smooth vector fields in its most global sense.pt_BR
dc.relation.ispartofMathematische zeitschriftpt_BR
dc.relation.ispartofabbreviationMath. z.pt_BR
dc.publisher.cityHeidelbergpt_BR
dc.publisher.countryAlemanhapt_BR
dc.publisherSpringerpt_BR
dc.date.issued2020-
dc.date.monthofcirculationFeb.pt_BR
dc.language.isoengpt_BR
dc.description.volume294pt_BR
dc.description.issuenumber1-2pt_BR
dc.description.firstpage419pt_BR
dc.description.lastpage449pt_BR
dc.rightsFechadopt_BR
dc.sourceScopuspt_BR
dc.identifier.issn0025-5874pt_BR
dc.identifier.eissn1432-1823pt_BR
dc.identifier.doi10.1007/s00209-019-02252-6pt_BR
dc.identifier.urlhttps://link.springer.com/article/10.1007/s00209-019-02252-6pt_BR
dc.date.available2020-05-14T18:22:05Z-
dc.date.accessioned2020-05-14T18:22:05Z-
dc.description.provenanceSubmitted by Bruna Maria Campos da Cunha (bcampos@unicamp.br) on 2020-05-14T18:22:05Z No. of bitstreams: 0. Added 1 bitstream(s) on 2020-08-27T19:17:49Z : No. of bitstreams: 1 2-s2.0-85061432652.pdf: 3963760 bytes, checksum: 4db7eaf1c591d140cfb581626af8ee83 (MD5)en
dc.description.provenanceMade available in DSpace on 2020-05-14T18:22:05Z (GMT). No. of bitstreams: 0 Previous issue date: 2020en
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/341449-
dc.contributor.departmentSem informaçãopt_BR
dc.contributor.departmentDepartamento de Matemáticapt_BR
dc.contributor.unidadeInstituto de Matemática, Estatística e Computação Científicapt_BR
dc.contributor.unidadeInstituto de Matemática, Estatística e Computação Científicapt_BR
dc.identifier.source2-s2.0-85061432652pt_BR
dc.creator.orcidorcid.org/0000-0001-7450-1180pt_BR
dc.creator.orcidorcid.org/0000-0002-5386-9282pt_BR
dc.type.formArtigo originalpt_BR
Appears in Collections:IMECC - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-85061432652.pdf3.87 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.