Please use this identifier to cite or link to this item:
Type: Artigo
Title: Interplay between near-field properties and au nanorod cluster structure: extending hot spots for surface-enhanced raman scattering
Author: Souza, Klester S.
Teixeira-Neto, Erico
Temperini, Marcia L. A.
dos Santos, Diego P.
Abstract: Materials science has observed a continuous increase in the use of metal nanoparticles in a wide range of studies, from fundamental physics to technological applications such as photocatalysis and optical communication devices. This broad scope has the same fundamental origin, the localized surface plasmons, whose excitation leads to strong light confinement, especially in the vicinity of closely spaced nanoparticles, the hot spots. The field amplification may be used to amplify the Raman scattering of adsorbed molecules, which is known as surface-enhanced Raman scattering (SERS). A crucial and limiting characteristic of SERS hot spots is their very localized nature. that influences the SERS intensity reproducibility as well as the probabilities of observation of single-molecule SERS signals. In this paper we discuss the correlation between SERS performance and gold nanorod cluster structures using transmission electron microscopy, SERS spectra and numerical simulations. The experimental data showed interesting behavior for the combination of end-to-end and side-by-side interactions, revealing the possibility of creating strong hot spots with a more extended spatial distribution. The results give insights into the development of high-performance SERS substrates
Subject: Espalhamento Raman intensificado por superfície
Country: Brasil
Editor: Sociedade Brasileira de Química
Rights: Aberto
Identifier DOI: 10.21577/0103-5053.20190179
Date Issue: 2019
Appears in Collections:IQ - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
S0103-50532019001202624.pdf3.38 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.