Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/341139
Type: Artigo
Title: Resistivity near a nematic quantum critical point: impact of acoustic phonons
Author: Carvalho, V. S. de
Fernandes, R. M.
Abstract: We revisit the issue of the resistivity of a two-dimensional electronic system tuned to a nematic quantum critical point (QCP), focusing on the nontrivial impact of the coupling to the acoustic phonons. Due to the unavoidable linear coupling between the electronic nematic order parameter and the lattice strain fields, long-range nematic interactions mediated by the phonons emerge in the problem. By solving the semiclassical Boltzmann equation in the presence of scattering by impurities and nematic fluctuations, we determine the temperature dependence of the resistivity as the nematic QCP is approached. One of the main effects of the nematoelastic coupling is to smooth the electronic nonequilibrium distribution function, making it approach the simple cosine angular dependence even when the impurity scattering is not too strong. We find that at temperatures lower than a temperature scale set by the nematoelastic coupling, the resistivity shows the T-2 behavior characteristic of a Fermi liquid. This is in contrast to the T-4/3 low-temperature behavior expected for a lattice-free nematic quantum critical point. More importantly, we show that the effective resistivity exponent alpha(eff)(T) in rho(T) - rho(0) similar to T-alpha eff(T) displays a pronounced temperature dependence, implying that a nematic QCP cannot generally be characterized by a simple resistivity exponent. We discuss the implications of our results to the interpretation of experimental data, particularly in the nematic superconductor FeSe1-xSx.
Subject: Supercondutores - Materiais
Supercondutividade
Supercondutores à base de ferro
Superconductors - Materials
Superconductivity
Iron-based superconductors
Country: Estados Unidos
Editor: American Physical Society
Rights: aberto
Identifier DOI: 10.1103/PhysRevB.100.115103
Address: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.115103
Date Issue: 2019
Appears in Collections:IFGW - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
000483580900003.pdf842.75 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.