Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/340806
Type: Artigo
Title: Active flow control for drag reduction of a plunging airfoil under deep dynamic stall
Author: Ramos, Brener L. O.
Wolf, William R.
Chi-An, Yeh
Taira, Kunihiko
Abstract: High-fidelity simulations are performed to study active flow control techniques for alleviating deep dynamic stall of an SD7003 airfoil in plunging motion. The flow Reynolds number is Re = 60 000 and the freestream Mach number is M = 0.1. Numerical simulations are performed with a finite-difference-based solver that incorporates high-order compact schemes for differentiation, interpolation, and filtering on a staggered grid. A mesh convergence study is conducted and results show good agreement with available data in terms of aerodynamic coefficients. Different spanwise arrangements of actuators are implemented to simulate blowing and suction at the airfoil leading edge. We observe that, for a specific frequency range of actuation, mean drag and drag fluctuations are substantially reduced while mean lift is maintained almost unaffected, especially for a two-dimensional (2D) actuator setup. For this frequency range, 2D flow actuation disrupts the formation of the dynamic stall vortex, which leads to drag reduction due to a pressure increase along the airfoil suction side, towards the trailing edge region. At the same time, pressure is reduced on the suction side near the leading edge, increasing lift and further reducing drag
Subject: Aerodinâmica
Country: Estados Unidos
Editor: American Physical Society
Rights: Fechado
Identifier DOI: 10.1103/PhysRevFluids.4.074603
Address: https://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.4.074603
Date Issue: 2019
Appears in Collections:FEM - Artigos e Outros Documentos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.