Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/340663
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE ESTADUAL DE CAMPINASpt_BR
dc.contributor.authorunicampDal Magro, Tamires-
dc.typeArtigopt_BR
dc.titleOn euclidean diagrams and geometrical knowledgept_BR
dc.title.alternativeSobre los diagramas euclidianos y el conocimiento geométricopt_BR
dc.contributor.authorDal Magro, Tamires-
dc.contributor.authorGarcia-Perez, Manuel J.-
dc.subjectGeometriapt_BR
dc.subject.otherlanguageGeometrypt_BR
dc.description.abstractWe argue against the claim that the employment of diagrams in Euclidean geometry gives rise to gaps in the proofs. First, we argue that it is a mistake to evaluate its merits through the lenses of Hilbert's formal reconstruction. Second, we elucidate the abilities employed in diagram-based inferences in the Elements and show that diagrams are mathematically reputable tools. Finally, we complement our analysis with a review of recent experimental results purporting to show that, not only is the Euclidean diagram-based practice strictly regimented, it is rooted in cognitive abilities that are universally sharedpt_BR
dc.relation.ispartofTheoriapt_BR
dc.publisher.citySan Sebastianpt_BR
dc.publisher.countryEspanhapt_BR
dc.publisherUniversidad del Pais Vasco/Servicio Editorialpt_BR
dc.date.issued2019-
dc.date.monthofcirculationMaypt_BR
dc.language.isoengpt_BR
dc.description.volume34pt_BR
dc.description.issuenumber2pt_BR
dc.description.firstpage255pt_BR
dc.description.lastpage276pt_BR
dc.rightsAbertopt_BR
dc.sourceWOSpt_BR
dc.identifier.issn0495-4548pt_BR
dc.identifier.eissn2171-679Xpt_BR
dc.identifier.doi10.1387/theoria.20026pt_BR
dc.identifier.urlhttps://www.ehu.eus/ojs/index.php/THEORIA/article/view/20026pt_BR
dc.description.sponsorshipFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPpt_BR
dc.description.sponsordocumentnumber2016/20480-5; 2014/23191-9pt_BR
dc.date.available2020-05-12T14:15:31Z-
dc.date.accessioned2020-05-12T14:15:31Z-
dc.description.provenanceSubmitted by Thais de Brito Barroso (tbrito@unicamp.br) on 2020-05-12T14:15:31Z No. of bitstreams: 0. Added 1 bitstream(s) on 2020-08-27T19:17:15Z : No. of bitstreams: 1 000491611100007.pdf: 609298 bytes, checksum: 375e42e62439938f806e6f4651040319 (MD5)en
dc.description.provenanceMade available in DSpace on 2020-05-12T14:15:31Z (GMT). No. of bitstreams: 0 Previous issue date: 2019en
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/340663-
dc.contributor.departmentSem informaçãopt_BR
dc.contributor.unidadeInstituto de Filosofia e Ciências Humanaspt_BR
dc.description.abstractalternativeArgumentamos en contra de la afirmación de que el uso de diagramas en la geometría euclidiana da lugar a vacíos o lagunas en las pruebas. En primer lugar, mostramos que es un error evaluar sus méritos a través de las lentes de la reconstrucción formal de Hilbert. En segundo lugar, esclarecemos las habilidades empleadas en las inferencias basadas en los diagramas en los Elementos, y mostramos que los diagramas son herramientas matemáticas respetables. Finalmente, complementamos nuestro análisis con una revisión de resultados experimentales recientes que pretenden mostrar que la práctica diagramática euclidiana no solo está estrictamente regimentada, sino que también está enraizada en ciertas habilidades cognitivas universalmente compartidaspt_BR
dc.subject.keywordMathematical practicept_BR
dc.subject.keywordEuclidean geometrypt_BR
dc.subject.keywordDiagrammatic reasoningpt_BR
dc.subject.keywordCognitive abilitiespt_BR
dc.identifier.source000491611100007pt_BR
dc.creator.orcid0000-0001-7423-9223pt_BR
dc.type.formArtigopt_BR
Appears in Collections:IFCH - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
000491611100007.pdf595.02 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.