Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/340478
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE ESTADUAL DE CAMPINASpt_BR
dc.contributor.authorunicampJardim, Marcos Benevenuto-
dc.contributor.authorunicampMenet, Grégoire Samuel Etienne-
dc.typeArtigopt_BR
dc.titleBrane involutions on irreducible holomorphic symplectic manifoldspt_BR
dc.contributor.authorFranco, Emilio-
dc.contributor.authorJardim, Marcos-
dc.contributor.authorMenet, Gregoire-
dc.subjectVariedades simpléticaspt_BR
dc.subject.otherlanguageSymplectic manifoldspt_BR
dc.description.abstractIn the context of irreducible holomorphic symplectic manifolds, we say that (anti)holomorphic (anti)symplectic involutions are brane involutions since their fixed point locus is a brane in the physicists’ language, i.e. a submanifold which is either complex or lagrangian submanifold with respect to each of the three K¨ahler structures of the associated hyperk¨ahler structure. Starting from a brane involution on a K3 or abelian surface, one can construct a natural brane involution on its moduli space of sheaves. We study these natural involutions and their relation with the Fourier–Mukai transform. Later, we recall the lattice-theoretical approach to Mirror Symmetry. We provide two ways of obtaining a brane involution on the mirror and we study the behaviour of the brane involutions under bothpt_BR
dc.relation.ispartofKyoto journal of mathematicspt_BR
dc.publisher.cityDurham, NCpt_BR
dc.publisher.countryEstados Unidospt_BR
dc.publisherDuke University Presspt_BR
dc.date.issued2019-04-
dc.date.monthofcirculationApr.pt_BR
dc.language.isoengpt_BR
dc.description.volume59pt_BR
dc.description.issuenumber1pt_BR
dc.description.firstpage195pt_BR
dc.description.lastpage235pt_BR
dc.rightsFechadopt_BR
dc.sourceWOSpt_BR
dc.identifier.issn2156-2261pt_BR
dc.identifier.eissn2154-3321pt_BR
dc.identifier.doi10.1215/21562261-2018-0009pt_BR
dc.identifier.urlhttps://arxiv.org/abs/1606.09040pt_BR
dc.date.available2020-05-08T18:50:32Z-
dc.date.accessioned2020-05-08T18:50:32Z-
dc.description.provenanceSubmitted by Susilene Barbosa da Silva (susilene@unicamp.br) on 2020-05-08T18:50:32Z No. of bitstreams: 0. Added 1 bitstream(s) on 2020-08-27T19:15:07Z : No. of bitstreams: 1 000460135600007.pdf: 449732 bytes, checksum: ba726ac12f41327577cf812103400564 (MD5)en
dc.description.provenanceMade available in DSpace on 2020-05-08T18:50:32Z (GMT). No. of bitstreams: 0 Previous issue date: 2019-04en
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/340478-
dc.contributor.departmentDepartamento de Matemáticapt_BR
dc.contributor.departmentSem informaçãopt_BR
dc.contributor.unidadeInstituto de Matemática, Estatística e Computação Científicapt_BR
dc.contributor.unidadeInstituto de Matemática, Estatística e Computação Científicapt_BR
dc.subject.keywordholomorphicpt_BR
dc.identifier.source000460135600007pt_BR
dc.creator.orcid0000-0002-8419-7044pt_BR
dc.creator.orcid0000-0002-9489-3393pt_BR
dc.type.formArtigopt_BR
Appears in Collections:IMECC - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
000460135600007.pdf439.19 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.