Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/340355
Type: Artigo
Title: The Use of different photoinitiator systems in photopolymerizing resin cements through ceramic veneers
Author: Delgado, A. J.
Castellanos, E. M.
Sinhoreti, M. A. C.
Oliveira, D. C.
Abdulhameed, N.
Geraldeli, S.
Sulaiman, T. A.
Roulet, J-F
Abstract: Objective: To evaluate the effect of different photoinitiator systems on photopolymerizing resin cements through ceramic veneers with different thickness on microshear bond strength (mu SBS), flexural strength (FS), and ultimate tensile strength (UTS) and verify the light attenuation through these ceramic veneers. Methods and Materials: Four photopolymerizing experimental resin cements were produced with the same resin matrix and associated with four different photoinitiator systems: camphorquinone (CQ), diphenyl(2,4,6-trimeth- ylbenzoyl)phosphine oxide (TPO), Ivocerin, and TPO + Ivocerin. Eighty disc-shaped ceramic veneers (IPS Empress Esthetic, Ivoclar Vivadent) were fabricated (10-mm diameter) in two different thicknesses: 0.7 and 1.5 mm. A previously characterized multiwave LED (Bluephase G2, Ivoclar Vivadent) was standardized for 40 seconds of photoactivation. Light transmittance through each ceramic veneer thickness (n=5) was measured using a spectrometer (USB 2000, Ocean Optics). The FiSBS of each resin cement (n=15) to the ceramic veneer was evaluated using 0.5-mm cylinders with 0.7-mm diameters photoactivated through the different ceramic veneer thicknesses. Samples for FS and UTS tests were made either with or without ceramics veneers (0.7 and 1.5 mm) fixed to the light-curing tip. Data were submitted to two-way analysis of variance and the Tukey test (alpha=0.05). Results: The multiwave LED emitted higher irradiance into the blue wavelength spectra than into the violet wavelength spectra (p=0.0001). Light transmittance through the ceramic veneers was reduced in a systematic manner based on thickness regardless of the wavelength spectra emitted from the multiwave LED (p=0.00037). The FiSBS was reduced in a systematic manner based on thickness regardless of the photoinitiator system (p<0.05). However, resin cements with CQ and Ivocerin showed higher bond strength values in comparison to the resin cement with TPO regardless of the ceramic veneer thickness (p<0.05). The FS and UTS means decreased (p<0.05) with the interposition of 0.7and 1.5-mm ceramic veneers for all resin cements. The resin cement containing only TPO showed the lowest FS and UTS means (p<0.05) for all ceramic veneers. Conclusions: The thickness of the ceramic veneers reduced the irradiance of the multiwave LED in all wavelength spectra. Ivocerin alone or associated with TPO showed to be an effective alternative photoinitiator to substitute for CQ. The resin cement containing only TPO had lower bond strength values in comparison to resin cements with CQ, Ivocerin, and Ivocerin + TPO.
Subject: Cimentos de resina
Country: Estados Unidos
Editor: University of Washington/School of Dentistry
Rights: Fechado
Identifier DOI: 10.2341/17-263-L
Address: https://www.jopdentonline.org/doi/abs/10.2341/17-263-L
Date Issue: 2019
Appears in Collections:FOP - Artigos e Outros Documentos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.