Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/340310
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE ESTADUAL DE CAMPINASpt_BR
dc.contributor.authorunicampSantos, Matheus Correia dos-
dc.typeArtigopt_BR
dc.titleDisplacement convexity for the entropy in semi-discrete non-linear Fokker-Planck equationspt_BR
dc.contributor.authorCarrillo, Jose A.-
dc.contributor.authorJuengel, Ansgar-
dc.contributor.authorSantos, Matheus C.-
dc.subjectEntropiapt_BR
dc.subject.otherlanguageEntropypt_BR
dc.description.abstractThe displacement lambda-convexity of a non-standard entropy with respect to a non-local transportation metric in finite state spaces is shown using a gradient flow approach. The constant lambda is computed explicitly in terms of a priori estimates of the solution to a finite-difference approximation of a non-linear Fokker-Planck equation. The key idea is to employ a new mean function, which defines the Onsager operator in the gradient flow formulationpt_BR
dc.relation.ispartofEuropean journal of applied mathematicspt_BR
dc.relation.ispartofabbreviationEur. j. appl. math.pt_BR
dc.publisher.cityCambridgept_BR
dc.publisher.countryReino Unidopt_BR
dc.publisherCambridge University Presspt_BR
dc.date.issued2019-
dc.date.monthofcirculationDec.pt_BR
dc.language.isoengpt_BR
dc.description.volume30pt_BR
dc.description.issuenumber6pt_BR
dc.description.firstpage1103pt_BR
dc.rightsFechadopt_BR
dc.sourceWOSpt_BR
dc.identifier.issn0956-7925pt_BR
dc.identifier.eissn1469-4425pt_BR
dc.identifier.doi10.1017/S0956792517000389pt_BR
dc.identifier.urlhttps://www.cambridge.org/core/journals/european-journal-of-applied-mathematics/article/displacement-convexity-for-the-entropy-in-semidiscrete-nonlinear-fokkerplanck-equations/F821FE7A1CCC76C2EA653C6C4D896094pt_BR
dc.description.sponsorshipFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPpt_BR
dc.description.sponsordocumentnumber2015/20962-7pt_BR
dc.date.available2020-05-07T13:03:59Z-
dc.date.accessioned2020-05-07T13:03:59Z-
dc.description.provenanceSubmitted by Mariana Aparecida Azevedo (mary1@unicamp.br) on 2020-05-07T13:03:59Z No. of bitstreams: 0. Added 1 bitstream(s) on 2020-08-27T19:17:21Z : No. of bitstreams: 1 000496147500004.pdf: 378545 bytes, checksum: bc2778f5009821b8e8391d805ccb3f48 (MD5)en
dc.description.provenanceMade available in DSpace on 2020-05-07T13:03:59Z (GMT). No. of bitstreams: 0 Previous issue date: 2018en
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/340310-
dc.contributor.departmentsem informaçãopt_BR
dc.contributor.unidadeInstituto de Matemática, Estatística e Computação Científicapt_BR
dc.subject.keywordDisplacement convexitypt_BR
dc.subject.keywordLogarithmic meanpt_BR
dc.subject.keywordFinite differencespt_BR
dc.subject.keywordFast-diffusion equationpt_BR
dc.identifier.source000496147500004pt_BR
dc.creator.orcid0000-0001-9536-8518pt_BR
dc.type.formArtigopt_BR
dc.identifier.articleid1122pt_BR
dc.description.sponsorNoteThe first author was partially supported by the Royal Society via a Wolfson Research Merit Award and the EPSRC Grant EP/P031587/1. The second author acknowledges partial support from the Austrian Science Fund (FWF), Grants P22108, P24304, F65 and W1245. The last author acknowledges the support from the São Paulo Research Foundation (FAPESP), Grant 2015/20962-7pt_BR
Appears in Collections:IMECC - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
000496147500004.pdf369.67 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.