Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/340119
Type: DISSERTAÇÃO DIGITAL
Degree Level: Mestrado
Title: Constructing knowledge graphs from textual documents for scientific literature analysis : Construindo grafos de conhecimento utilizando documentos textuais para análise de literatura científica
Title Alternative: Construindo grafos de conhecimento utilizando documentos textuais para análise de literatura científica
Author: Tosi, Mauro Dalle Lucca, 1995-
Advisor: Reis, Julio Cesar dos, 1987-
Abstract: Resumo: O número de publicações científicas que pesquisadores tem que ler vem aumento nos últimos anos. Consequentemente, dentre várias opções, é difícil para eles identificarem documentos relevantes relacionados aos seus estudos. Ademais, para entender como um campo científico é organizado, e para estudar o seu estado da arte, pesquisadores geralmente se baseiam em artigos de revisão de uma área. Estes artigos podem estar indisponíveis ou desatualizados dependendo do tema estudado. Usualmente, pesquisadores têm que realizar esta árdua tarefa de pesquisa fundamental manualmente. Pesquisas recentes vêm desenvolvendo mecanismos para auxiliar outros pesquisadores a entender como campos científicos são estruturados. Entretanto, estes mecanismos são focados exclusivamente em recomendar artigos relevantes para os pesquisadores ou os auxiliar em entender como um ramo da ciência é organizado ao nível de publicação. Desta forma, estes métodos limitam o entendimento sobre o ramo estudado, não permitindo que interessados estudem os conceitos e relações abstratas que compõe um ramo da ciência e as suas subáreas. Esta dissertação de mestrado propõe um framework para estruturar, analisar, e rastrear a evolução de um campo científico no nível dos seus conceitos. Ela primeiramente estrutura o campo científico como um grafo-de-conhecimento utilizando os seus conceitos como vértices. A seguir, ela automaticamente identifica as principais subáreas do campo estudado, extrai as suas frases-chave, e estuda as suas relações. Nosso framework representa o campo científico em diferentes períodos do tempo. Esta dissertação compara estas representações, e identifica como as subáreas do campo estudado evoluiram no decorrer dos anos. Avaliamos cada etapa do nosso framework representando e analisando dados científicos provenientes de diferentes áreas de conhecimento em casos de uso. Nossas descobertas indicam o sucesso em detectar resultados similares em diferentes casos de uso, indicando que nossa abordagem é aplicável à diferentes domínios da ciência. Esta pesquisa também contribui com uma aplicação com interface web para auxiliar pesquisadores a utilizarem nosso framework de forma gráfica. Ao utilizar nossa aplicação, pesquisadores podem ter uma análise geral de como um campo científico é estruturado e como ele evolui

Abstract: The amount of publications a researcher must absorb has been increasing over the last years. Consequently, among so many options, it is hard for them to identify interesting documents to read related to their studies. Researchers usually search for review articles to understand how a scientific field is organized and to study its state of the art. This option can be unavailable or outdated depending on the studied area. Usually, they have to do such laborious task of background research manually. Recent researches have developed mechanisms to assist researchers in understanding the structure of scientific fields. However, those mechanisms focus on recommending relevant articles to researchers or supporting them in understanding how a scientific field is organized considering documents that belong to it. These methods limit the field understanding, not allowing researchers to study the underlying concepts and relations that compose a scientific field and its sub-areas. This Ms.c. thesis proposes a framework to structure, analyze, and track the evolution of a scientific field at a concept level. Given a set of textual documents as research papers, it first structures a scientific field as a knowledge graph using its detected concepts as vertices. Then, it automatically identifies the field's main sub-areas, extracts their keyphrases, and studies their relations. Our framework enables to represent the scientific field in distinct time-periods. It allows to compare its representations and identify how the field's areas changed over time. We evaluate each step of our framework representing and analyzing scientific data from distinct fields of knowledge in case studies. Our findings indicate the success in detecting the sub-areas based on the generated graph from natural language documents. We observe similar outcomes in the different case studies by indicating our approach applicable to distinct domains. This research also contributes with a web-based software tool that allows researchers to use the proposed framework graphically. By using our application, researchers can have an overview analysis of how a scientific field is structured and how it evolved
Subject: Grafo (Sistema de computador)
Redes complexas
Centralidade (Teoria dos grafos)
Computação semântica
Conhecimento cientifico
Language: Inglês
Editor: [s.n.]
Citation: TOSI, Mauro Dalle Lucca. Constructing knowledge graphs from textual documents for scientific literature analysis: Construindo grafos de conhecimento utilizando documentos textuais para análise de literatura científica. 2020. 1 recurso online (103 p.) Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação, Campinas, SP.
Date Issue: 2020
Appears in Collections:IC - Tese e Dissertação

Files in This Item:
File SizeFormat 
Tosi_MauroDalleLucca_M.pdf11.21 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.