Please use this identifier to cite or link to this item:
Type: Artigo
Title: On the Schrödinger-Debye system in compact riemannian manifolds
Author: Nogueira, Marcelo
Panthee, Mahendra
Abstract: We consider the initial value problem (IVP) associated with the Schriidinger-Debye system posed on a d-dimensional compact Riemannian manifold M and prove the local well-posedness result for given data (u(0),v(0)) is an element of H-s(M) x (H-s (M) boolean AND L-infinity(M)) whenever s > d/2- 1/2, d >= 2. For d = 2, we apply a sharp version of the Gagliardo-Nirenberg inequality in compact manifold to derive an a priori estimate for the H-1-solution and use it to prove the global well-posedness result in this space.
Subject: Schrödinger, Equação de
Country: Estados Unidos
Editor: American Institute of Mathematical Sciences
Rights: Fechado
Identifier DOI: 10.3934/cpaa.2020022
Date Issue: 2020
Appears in Collections:IMECC - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
000475504300022.pdf649.69 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.