Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/339338
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE ESTADUAL DE CAMPINASpt_BR
dc.contributor.authorunicampFiscella, Alessio-
dc.typeArtigopt_BR
dc.titleThe Nehari manifold for fractional Kirchhoff problems involving singular and critical termspt_BR
dc.contributor.authorFiscella, Alessio-
dc.contributor.authorMishra, Pawan Kumar-
dc.subjectLaplaciano fracionáriopt_BR
dc.subject.otherlanguageFractional laplacianpt_BR
dc.description.abstractIn the present paper, we study the following singular Kirchhoff problem {M(integral integral(R2N) vertical bar u(x) - u(y)vertical bar(2)/vertical bar x - y vertical bar(N+2s)dxdy) (-Delta)(s)u =lambda f(x)u(-gamma) + g(x)u(2s)*(-1) in Omega, u > 0 in Omega, u = 0 in R-N\Omega, where Omega subset of R-N is an open bounded domain, dimension N > 2s with s is an element of(0, 1), 2(s)* = 2N/(N - 2s) is the fractional critical Sobolev exponent, parameter lambda > 0, exponent gamma is an element of(0, 1), M models a Kirchhoff coefficient, f is an element of L-2s*(/2s)*(+gamma-1) (Omega) is a positive weight, while g is an element of L-infinity(Omega) is a sign-changing function. Using the idea of Nehari manifold technique, we prove the existence of at least two positive solutions for a sufficiently small choice of lambda. This approach allows us to avoid any restriction on the boundary of Omegapt_BR
dc.relation.ispartofNonlinear analysis: theory, methods & applicationspt_BR
dc.relation.ispartofabbreviationNonlinear anal.: theory methods appl.pt_BR
dc.publisher.cityOxfordpt_BR
dc.publisher.countryReino Unidopt_BR
dc.publisherElsevierpt_BR
dc.date.issued2019-
dc.date.monthofcirculationSept.pt_BR
dc.language.isoengpt_BR
dc.description.volume186pt_BR
dc.description.firstpage6pt_BR
dc.description.lastpage32pt_BR
dc.rightsFechadopt_BR
dc.sourceWOSpt_BR
dc.identifier.issn0362-546Xpt_BR
dc.identifier.eissn1873-5215pt_BR
dc.identifier.doi10.1016/j.na.2018.09.006pt_BR
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0362546X18302207pt_BR
dc.description.sponsorshipCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQpt_BR
dc.description.sponsorshipCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESpt_BR
dc.description.sponsorshipFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPpt_BR
dc.description.sponsordocumentnumber3787749185990982pt_BR
dc.description.sponsordocumentnumbernão tempt_BR
dc.description.sponsordocumentnumber2017/19752-3pt_BR
dc.date.available2020-04-20T15:41:57Z-
dc.date.accessioned2020-04-20T15:41:57Z-
dc.description.provenanceSubmitted by Mariana Aparecida Azevedo (mary1@unicamp.br) on 2020-04-20T15:41:57Z No. of bitstreams: 0. Added 1 bitstream(s) on 2020-07-30T19:34:40Z : No. of bitstreams: 1 000471821200002.pdf: 1030784 bytes, checksum: d727b3b21330fe86d858194a6ba51278 (MD5)en
dc.description.provenanceMade available in DSpace on 2020-04-20T15:41:57Z (GMT). No. of bitstreams: 0 Previous issue date: 2018en
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/339338-
dc.contributor.departmentDepartamento de Matemáticapt_BR
dc.contributor.unidadeInstituto de Matemática, Estatística e Computação Científicapt_BR
dc.subject.keywordKirchhoff type problemspt_BR
dc.subject.keywordSingularitiespt_BR
dc.subject.keywordCritical nonlinearitiespt_BR
dc.subject.keywordNehari manifoldspt_BR
dc.identifier.source000471821200002pt_BR
dc.creator.orcid0000-0001-6281-4040pt_BR
dc.type.formArtigopt_BR
Appears in Collections:IMECC - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
000471821200002.pdf1.01 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.