Please use this identifier to cite or link to this item:
Type: Artigo
Title: The Nehari manifold for fractional Kirchhoff problems involving singular and critical terms
Author: Fiscella, Alessio
Mishra, Pawan Kumar
Abstract: In the present paper, we study the following singular Kirchhoff problem {M(integral integral(R2N) vertical bar u(x) - u(y)vertical bar(2)/vertical bar x - y vertical bar(N+2s)dxdy) (-Delta)(s)u =lambda f(x)u(-gamma) + g(x)u(2s)*(-1) in Omega, u > 0 in Omega, u = 0 in R-N\Omega, where Omega subset of R-N is an open bounded domain, dimension N > 2s with s is an element of(0, 1), 2(s)* = 2N/(N - 2s) is the fractional critical Sobolev exponent, parameter lambda > 0, exponent gamma is an element of(0, 1), M models a Kirchhoff coefficient, f is an element of L-2s*(/2s)*(+gamma-1) (Omega) is a positive weight, while g is an element of L-infinity(Omega) is a sign-changing function. Using the idea of Nehari manifold technique, we prove the existence of at least two positive solutions for a sufficiently small choice of lambda. This approach allows us to avoid any restriction on the boundary of Omega
Subject: Laplaciano fracionário
Country: Reino Unido
Editor: Elsevier
Rights: Fechado
Identifier DOI: 10.1016/
Date Issue: 2019
Appears in Collections:IMECC - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
000471821200002.pdf1.01 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.