Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/337617
Type: Artigo
Title: Aplicando aprendizado de máquina para identificação do gosto musical de um indivíduo
Title Alternative: Applying machine learning to identify musical taste
Author: Lemos, Julio Cesar
Santos, Marcelo Carlos Benitez dos
Vilela, Plinio Roberto Souza
Rezende, Marcelo Novaes de
Abstract: Descobrir o gosto musical de uma pessoa tem aplicação óbvia nos mecanismos de recomendação de provedores deserviços de música. Estamos interessados em uma aplicação menos óbvia, relacionada ao ambiente de trabalho deum desenvolvedor de software. Neste trabalho, comparamos dois classi cadores usados na mineração de dados. OSupportVectorMachine(SVM) e ok-NearestNeighbor(k-NN) são avaliados como preditores do gosto musical deum usuário. Utilizamos um banco de dados de músicas classi cadas previamente com um rótulo indicando seo usuário gosta ou não de cada música. O banco de dados inclui características das músicas; cada classi cadorusa as mesmas combinações de características no processo de aprendizado e depois classi ca novas instânciasde músicas de acordo com o gosto previsto para o usuário. Este estudo inicial indicou o SVM como um melhorpreditor do que o k-NN. Investigações futuras pretendem avaliar o usuário em um ambiente síncrono; nossahipótese é que seja possível entender mais do que o cenário de gostar / não gostar e expandir para o que o usuáriodeseja ouvir em um determinado momento, capturando seu humor. Eventualmente, correlacionando o humor deum desenvolvedor de software com a propensão a falhas do código escrito
metadata.dc.description.abstractalternative: Discovering the musical taste of a person has an obvious application in recommendation mechanisms used by music service providers. We are interested in a less obvious application, related to the work environment of a software developer. In this work we compare two algorithms used in data mining as classifiers. The goal is to compare Support Vector Machine (SVM) and k-Nearest Neighbor (k-NN) as predictors of the musical taste of a user. We use a database of songs previously classified with a label indicating whether the user likes or dislikes each song. The database includes features of the song; each classifier uses the same combinations of features in the learning process and then classifies new instances of songs according to the user's predicted taste. This initial study indicated SVM as a better predictor than k-NN for this particular context. Future investigations intend to evaluate the user in a synchronous environment, our hypothesis is that it might be possible to understand more than the like / dislike scenario and expand to what the user wants to hear at a particular moment, capturing her mood. Eventually correlate the mood of a software developer to the fault proneness of the code she has written
Subject: Aprendizado de máquina
Country: Brasil
Editor: Universidade de Passo Fundo
Rights: Fechado
Identifier DOI: 10.5335/rbca.v11i3.9230
Address: http://seer.upf.br/index.php/rbca/article/view/9230
Date Issue: 2019
Appears in Collections:FT - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
000493127600008.pdf687.49 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.