Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/336858
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE ESTADUAL DE CAMPINASpt_BR
dc.contributor.authorunicampSagastizabal, Claudia Alejandra-
dc.typeArtigopt_BR
dc.titleA class of Benders decomposition methods for variational inequalitiespt_BR
dc.contributor.authorLuna, Juan Pablo-
dc.contributor.authorSagastizabal, Claudia-
dc.contributor.authorSolodov, Mikhail-
dc.subjectDesigualdades variacionais (Matemática)pt_BR
dc.subjectDecomposição (Matemática)pt_BR
dc.subject.otherlanguageVariational inequalities (Mathematics)pt_BR
dc.subject.otherlanguageDecomposition (Mathematics)pt_BR
dc.description.abstractWe develop new variants of Benders decomposition methods for variational inequality problems. The construction is done by applying the general class of Dantzig-Wolfe decomposition of Luna et al. (Math Program 143(1-2):177-209, 2014) to an appropriately defined dual of the given variational inequality, and then passing back to the primal space. As compared to previous decomposition techniques of the Benders kind for variational inequalities, the following improvements are obtained. Instead of rather specific single-valued monotone mappings, the framework includes a rather broad class of multi-valued maximally monotone ones, and single-valued nonmonotone. Subproblems' solvability is guaranteed instead of assumed, and approximations of the subproblems' mapping are allowed (which may lead, in particular, to further decomposition of subproblems, which may otherwise be not possible). In addition, with a certain suitably chosen approximation, variational inequality subproblems become simple bound-constrained optimization problems, thus easier to solvept_BR
dc.relation.ispartofComputational optimization and applicationspt_BR
dc.publisher.cityNew York, NYpt_BR
dc.publisher.countryEstados Unidospt_BR
dc.publisherSpringerpt_BR
dc.date.issued2019-
dc.date.monthofcirculationNov.pt_BR
dc.language.isoengpt_BR
dc.rightsFechadopt_BR
dc.sourceWOSpt_BR
dc.identifier.issn0926-6003pt_BR
dc.identifier.eissn1573-2894pt_BR
dc.identifier.doi10.1007/s10589-019-00157-ypt_BR
dc.identifier.urlhttps://link.springer.com/article/10.1007%2Fs10589-019-00157-ypt_BR
dc.description.sponsorshipCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQpt_BR
dc.description.sponsordocumentnumber303905/2015-8; 303724/2015-3pt_BR
dc.description.sponsordocumentnumber203.052/2016; E-26/210.908/2016pt_BR
dc.date.available2020-03-18T20:05:17Z-
dc.date.accessioned2020-03-18T20:05:17Z-
dc.description.provenanceSubmitted by Cintia Oliveira de Moura (cintiaom@unicamp.br) on 2020-03-18T20:05:17Z No. of bitstreams: 0. Added 1 bitstream(s) on 2020-07-20T14:20:00Z : No. of bitstreams: 1 000499839200001.pdf: 434289 bytes, checksum: 75084b216ddd2430f26c3abaea418659 (MD5)en
dc.description.provenanceMade available in DSpace on 2020-03-18T20:05:17Z (GMT). No. of bitstreams: 0 Previous issue date: 2019en
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/336858-
dc.contributor.unidadeInstituto de Matemática, Estatística e Computação Científicapt_BR
dc.subject.keywordBenders decompositionpt_BR
dc.subject.keywordDantzig-Wolfe decompositionpt_BR
dc.subject.keywordStochastic Nash gamespt_BR
dc.identifier.source499839200001pt_BR
dc.creator.orcid0000-0002-9363-9297pt_BR
dc.type.formArtigo de Periódicopt_BR
dc.description.otherSponsorshipFAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiropt_BR
dc.description.sponsorNoteFAPERJCarlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro (FAPERJ) [203.052/2016, E-26/210.908/2016]; CNPqNational Council for Scientific and Technological Development (CNPq) [303905/2015-8, 303724/2015-3]; Gaspard Monge Visiting Professor Program; EPSRCEngineering & Physical Sciences Research Council (EPSRC) [EP/ R014604/1]; Russian Foundation for Basic Research GrantRussian Foundation for Basic Research (RFBR) [19-51-12003 NNIOa]pt_BR
Appears in Collections:IMECC - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
000499839200001.pdf424.11 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.