Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/334947
Type: TESE DIGITAL
Degree Level: Doutorado
Title: Learning graph-based representations and matching in classification tasks : Aprendizado de representações e correspondências baseadas em grafos para tarefas de classificação
Title Alternative: Aprendizado de representações e correspondências baseadas em grafos para tarefas de classificação
Author: Werneck, Rafael de Oliveira, 1989-
Advisor: Torres, Ricardo da Silva, 1977-
Abstract: Resumo: Muitas situações do mundo real podem ser modeladas por meio de objetos e seus relacionamentos, como, por exemplo, estradas conectando cidades em um mapa. Grafo é um conceito derivado da abstração dessas situações. Grafos são uma poderosa representação estrutural que codifica relações entre objetos e entre seus componentes em um único formalismo. Essa representação é tão poderosa que é aplicada em uma ampla gama de aplicações, de bioinformática a redes sociais. Dessa maneira, diversos problemas de reconhecimento de padrões são modelados para utilizar representações baseadas em grafos. Em problemas de classificação, os relacionamentos presentes entre objetos ou entre seus componentes são explorados para obter soluções efetivas e/ou eficientes. Nesta tese, nós investigamos o uso de grafos em problemas de classificação. Nós propomos duas linhas de pesquisa na tese: 1) uma representação baseada em grafos associados a objetos multi-modais; e 2) uma abordagem baseada em aprendizado para identificar correspondências entre grafos. Inicialmente, nós investigamos o uso do método Sacola de Grafos Visuais para representar regiões na classificação de imagens de sensoriamento remoto, considerando a distribuição espacial de pontos de interesse dentro da imagem. Quando é feita a combinação de representações de cores e textura, nós obtivemos resultados efetivos em duas bases de dados da literatura (Monte Santo e Campinas). Em segundo lugar, nós propomos duas novas extensões do método de Sacola de Grafos para a representação de objetos multi-modais. Ao utilizar essas abordagens, nós combinamos visões complementares de diferentes modalidades (por exemplo, descrições visuais e textuais). Nós validamos o uso dessas abordagens no problema de detecção de enchentes proposto pela iniciativa MediaEval, obtendo 86,9\% de acurácia nos 50 primeiros resultados retornados. Nós abordamos o problema de corresponência de grafos ao propor um arcabouço original para aprender a função de custo no método de distância de edição de grafos. Nós também apresentamos algumas implementações utilizando métodos de reconhecimento em cenário aberto e medidas de redes complexas para caracterizar propriedades locais de grafos. Até onde sabemos, nós fomos os primeiros a tratar o processo de aprendizado de custo como um problema de reconhecimento em cenário aberto e os primeiros a explorar medidas de redes complexas em tais problemas. Nós obtivemos resultados efetivos, que são comparáveis a diversos métodos da literatura em problemas de classificação de grafos

Abstract: Many real-world situations can be modeled through objects and their relationships, like the roads connecting cities in a map. Graph is a concept derived from the abstraction of these situations. Graphs are a powerful structural representation, which encodes relationship among objects and among their components into a single formalism. This representation is so powerful that it is applied to a wide range of applications, ranging from bioinformatics to social networks. Thus, several pattern recognition problems are modeled to use graph-based representations. In classification problems, the relationships among objects or among their components are exploited to achieve effective and/or efficient solutions. In this thesis, we investigate the use of graphs in classification problems. Two research venues are followed: 1) proposal of graph-based multimodal object representations; and 2) proposal of learning-based approaches to support graph matching. Firstly, we investigated the use of the recently proposed Bag-of-Visual-Graphs method in the representation of regions in a remote sensing classification problem, considering the spatial distribution of interest points within the image. When we combined color and texture representations, we obtained effective results in two datasets of the literature (Monte Santo and Campinas). Secondly, we proposed two new extensions of the Bag-of-Graphs method to the representation of multimodal objects. By using these approaches, we can combine complementary views of different modalities (e.g., visual and textual descriptions). We validated the use of these approaches in the flooding detection problem proposed by the MediaEval initiative, achieving 86.9\% of accuracy at the Precision@50. We addressed the graph matching problem by proposing an original framework to learn the cost function in a graph edit distance method. We also presented a couple of formulations using open-set recognition methods and complex network measurements to characterize local graph properties. To the best of our knowledge, we were the first to conduct the cost learning process as an open-set recognition problem and to exploit complex network measurements in such problems. We have achieved effective results, which are comparable to several baselines in graph classification problems
Subject: Aprendizado de máquina
Representação multimodal
Correspondência de grafos (Teoria dos grafos)
Aprendizado de custos
Classificação multi-classe
Language: Inglês
Editor: [s.n.]
Citation: WERNECK, Rafael de Oliveira. Learning graph-based representations and matching in classification tasks: Aprendizado de representações e correspondências baseadas em grafos para tarefas de classificação. 2019. 1 recurso online (101 p.). Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação, Campinas, SP.
Date Issue: 2019
Appears in Collections:IC - Tese e Dissertação

Files in This Item:
File SizeFormat 
Werneck_RafaelDeOliveira_D.pdf11.01 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.