Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/332181
Type: DISSERTAÇÃO DIGITAL
Degree Level: Mestrado
Title: Proper gap-labellings : on the edge and vertex variants = Rotulações próprias por gap: variantes de arestas e de vértices
Title Alternative: Rotulações próprias por gap : variantes de arestas e de vértices
Author: Santos, Celso Aimbiré Weffort, 1990-
Advisor: Campos, Christiane Neme, 1972-
Abstract: Resumo: Uma rotulação própria é uma atribuição de valores numéricos aos elementos de um grafo, que podem ser seus vértices, arestas ou ambos, de modo a obter - usando certas funções matemáticas sobre o conjunto de rótulos - uma coloração dos vértices do grafo tal que nenhum par de vértices adjacentes receba a mesma cor. Este texto aborda o problema da rotulação própria por gap em suas versões de arestas e de vértices. Na versão de arestas, um vértice de grau pelo menos dois tem sua cor definida como a maior diferença, i.e. o maior gap, entre os rótulos de suas arestas incidentes; já na variante de vértices, o gap é definido pela maior diferença entre os rótulos dos seus vértices adjacentes. Para vértices de grau um, sua cor é dada pelo rótulo da sua aresta incidente, no caso da versão de arestas, e pelo rótulo de seu vértice adjacente, no caso da versão de vértices. Finalmente, vértices de grau zero recebem cor um. O menor número de rótulos para o qual um grafo admite uma rotulação própria por gap de arestas vértices é chamado edge-gap (vertex-gap) number. Neste trabalho, apresentamos um breve histórico das rotulações próprias por gap e os resultados obtidos para as duas versões do problema. Estudamos o edge-gap e o vertex-gap numbers para as famílias de ciclos, coroas, rodas, grafos unicíclicos e algumas classes de snarks. Adicionalmente, na versão de vértices, investigamos a família de grafos cúbicos bipartidos hamiltonianos, desenvolvendo diversas técnicas de rotulação para grafos nesta classe. Em uma abordagem relacionada, provamos resultados de complexidade para a família dos grafos subcúbicos bipartidos. Além disso, demonstramos propriedades estruturais destas rotulações de vértices por gap e estabelecemos limitantes inferiores e superiores justos para o vertex-gap number de grafos arbitrários. Mostramos, ainda, que nem todos os grafos admitem uma rotulação de vértices por gap, exibindo duas famílias infinitas que não admitem tal rotulação. A partir dessas classes, definimos um novo parâmetro chamado de gap-strength, referente ao menor número de arestas que precisam ser removidas de um grafo de modo a obter um novo grafo que é gap-vértice-rotulável. Estabelecemos um limitante superior para o gap-strength de grafos completos e apresentamos evidências de que este valor pode ser um limitante inferior

Abstract: A proper labelling is an assignment of numerical values to the elements of a graph, which can be vertices, edges or both, so as to obtain - through the use of mathematical functions over the set of labels - a vertex-colouring of the graph such that every pair of adjacent vertices receives different colours. This text addresses the proper gap-labelling problem in its edge and vertex variants. In the former, a vertex of degree at least two has its colour defined by the largest difference, or gap, among the labels of its incident edges; in the vertex variant, the gap is defined by the largest difference among the labels of its adjacent vertices. For a degree-one vertex, its colour is defined by the label of its incident edge, in the edge version, and by the label of its adjacent vertex, in the vertex variant. Finally, degree-zero vertices receive colour one. The least number of labels for which a graph admits a proper gap-labelling of its edges (vertices) is called the edge-gap (vertex-gap) number. In this work, we present a brief history of proper gap-labellings and our results for both versions of the problem. We study the edge-gap and vertex-gap numbers for the families of cycles, crowns, wheels, unicyclic graphs and some classes of snarks. Additionally, in the vertex version, we investigate the family of cubic bipartite hamiltonian graphs and develop several labelling techniques for graphs in this class. In a related approach, we prove hardness results for the family of subcubic bipartite graphs. Also, we demonstrate structural properties of gap-vertex-labelable graphs and establish tight lower and upper bounds for the vertex-gap number of arbitrary graphs. We also show that not all graphs admit a proper gap-labelling, exhibiting two infinite families of graphs for which no such vertex-labelling exists. Thus, we define a new parameter called the gap-strength of graphs, which is the least number of edges that have to be removed from a graph so as to obtain a new, gap-vertex-labelable graph. We establish an upper bound for the gap-strength of complete graphs and argue that this value can also be used as a lower bound
Subject: Rotulação de grafos
Coloração de grafos
Teoria dos grafos
Teoria da computação
Language: Inglês
Editor: [s.n.]
Citation: SANTOS, Celso Aimbiré Weffort. Proper gap-labellings: on the edge and vertex variants = Rotulações próprias por gap: variantes de arestas e de vértices. 2018. 1 recurso online (162 p.). Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação, Campinas, SP.
Date Issue: 2018
Appears in Collections:IC - Tese e Dissertação

Files in This Item:
File SizeFormat 
Santos_CelsoAimbire_Weffort_M.pdf2.1 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.