Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/330690
Type: TESE DIGITAL
Degree Level: Doutorado
Title: Super-resolution in low-quality videos for forensics, surveillance, and mobile applications = Super-resolução em vídeos de baixa qualidade para aplicações forenses, de vigilância e móveis
Title Alternative: Super-resolução em vídeos de baixa qualidade para aplicações forenses, de vigilância e móveis
Author: Seibel Júnior, Hilário, 1981-
Advisor: Goldenstein, Siome Klein, 1972-
Abstract: Resumo: Algoritmos de super-resolução (SR) são métodos para obter um aumento da resolução de imagens compostas por pixels. Na super-resolução por múltiplas imagens, um conjunto de imagens de baixa resolução de uma cena é combinado para construir uma imagem de resolução superior. Super-resolução é uma solução barata para superar as limitações dos sistemas de aquisição de imagens, e pode ser útil em diversos casos em que o dispositivo não pode ser melhorado ou substituído - mas em que é possível obter diversas capturas da mesma cena. Neste trabalho, é explorada a super-resolução por múltiplas imagens para imagens naturais, em cenários nos quais é possível obter diversas imagens de uma cena. São propostas cinco variações de um método que explora propriedades geométricas de múltiplas imagens de baixa resolução para combiná-las em uma imagem de resolução superior; duas variações de um método que combina técnicas de inpainting e super-resolução; e mais três variações de um método que utiliza filtros adaptativos e regularização para resolver um problema de mínimos quadrados. Super-resolução por múltiplas imagens é possível quando existe movimento e informações não redundantes entre as imagens de baixa resolução. Entretanto, combiná-las em uma imagem de resolução superior pode não ser computacionalmente viável por técnicas complexas de super-resolução. A primeira aplicação dos métodos propostos é para um conjunto de imagens capturadas pelos dispositivos móveis mais recentes. Este tipo de ambiente requer algoritmos eficazes que sejam executados rapidamente e utilizando baixo consumo de memória. A segunda aplicação é na Ciência Forense. Câmeras de vigilância espalhadas pelas cidades poderiam fornecer dicas importantes para identificar um suspeito, por exemplo, em uma cena de crime. Entretanto, o reconhecimento dos caracteres de placas veiculares é especialmente difícil quando a resolução das imagens é baixa. Por isso, este trabalho também propõe um arcabouço que realiza a super-resolução de placas veiculares em vídeos reais de vigilância, capturados por câmeras de baixa qualidade e não projetadas especificamente para esta tarefa, ajudando o especialista forense a compreender um evento de interesse. O arcabouço realiza todas as etapas necessárias para rastrear, alinhar, reconstruir e reconhecer automaticamente os caracteres de uma placa suspeita. O usuário recebe, como saída, a imagem de alta resolução reconstruída, mais rica em detalhes, e também a sequência de caracteres reconhecida automaticamente nesta imagem. São apresentadas validações quantitativas e qualitativas dos algoritmos propostos e de suas aplicações. Os experimentos mostram, por exemplo, que é possível aumentar o número de caracteres reconhecidos corretamente, colocando o arcabouço proposto como uma ferramenta importante para fornecer aos peritos uma solução para o reconhecimento de placas veiculares sob condições adversas de aquisição. Por fim, também é sugerido o número mínimo de imagens a ser utilizada como entrada em cada aplicação

Abstract: Super-resolution (SR) algorithms are methods for achieving high-resolution (HR) enlargements of pixel-based images. In multi-frame super resolution, a set of low-resolution (LR) images of a scene are combined to construct an image with higher resolution. Super resolution is an inexpensive solution to overcome the limitations of image acquisition hardware systems, and can be useful in several cases in which the device cannot be upgraded or replaced, but multiple frames of the same scene can be obtained. In this work, we explore SR possibilities for natural images, in scenarios wherein we have multiple frames of a same scene. We design and develop five variations of an algorithm which rely on exploring geometric properties in order to combine pixels from LR observations into an HR grid; two variations of a method that combines inpainting techniques to multi-frame super resolution; and three variations of an algorithm that uses adaptive filtering and Tikhonov regularization to solve a least-square problem. Multi-frame super resolution is possible when there is motion and non-redundant information from LR observations. However, combining a large number of frames into a higher resolution image may not be computationally feasible by complex super-resolution techniques. The first application of the proposed methods is in consumer-grade photography with a setup in which several low-resolution images gathered by recent mobile devices can be combined to create a much higher resolution image. Such always-on low-power environment requires effective high-performance algorithms, that run fastly and with a low-memory footprint. The second application is in Digital Forensic, with a setup in which low-quality surveillance cameras throughout the cities could provide important cues to identify a suspect vehicle, for example, in a crime scene. However, license-plate recognition is especially difficult under poor image resolutions. Hence, we design and develop a novel, free and open-source framework underpinned by SR and Automatic License-Plate Recognition (ALPR) techniques to identify license-plate characters in low-quality real-world traffic videos, captured by cameras not designed for the ALPR task, aiding forensic analysts in understanding an event of interest. The framework handles the necessary conditions to identify a target license plate, using a novel methodology to locate, track, align, super resolve, and recognize its alphanumerics. The user receives as outputs the rectified and super-resolved license-plate, richer in details, and also the sequence of license-plates characters that have been automatically recognized in the super-resolved image. We present quantitative and qualitative validations of the proposed algorithms and its applications. Our experiments show, for example, that SR can increase the number of correctly recognized characters posing the framework as an important step toward providing forensic experts and practitioners with a solution for the license-plate recognition problem under difficult acquisition conditions. Finally, we also suggest a minimum number of images to use as input in each application
Subject: Resolução (Óptica)
Videovigilância
Investigação criminal
Telefone celular
Language: Inglês
Editor: [s.n.]
Citation: SEIBEL JÚNIOR, Hilário. Super-resolution in low-quality videos for forensics, surveillance, and mobile applications = Super-resolução em vídeos de baixa qualidade para aplicações forenses, de vigilância e móveis. 2017. 1 recurso online (135 p.). Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação, Campinas, SP. Disponível em: <http://www.repositorio.unicamp.br/handle/REPOSIP/330690>. Acesso em: 2 set. 2018.
Date Issue: 2017
Appears in Collections:IC - Tese e Dissertação

Files in This Item:
File SizeFormat 
SeibelJunior_Hilario_D.pdf36.56 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.