Please use this identifier to cite or link to this item:
Type: Artigo
Title: Biomechanical Behavior Of The Dental Implant Macrodesign
Author: de Andrade
Camila Lima; Carvalho
Marco Aurelio; Bordin
Dimorvan; da Silva
Wander Jose; Del Bel Cury
Altair Antoninha; Sotto-Maior
Bruno Salles
Abstract: The aim of this study was to evaluate the influence of implant macrodesign when using different types of collar and thread designs on stress/strain distributions in a maxillary bone site. Materials and Methods: Six groups were obtained from the combination of two collar designs (smooth and microthread) and three thread shapes (square, trapezoidal, and triangular) in external hexagon implants (4 x 10 mm) supporting a single zirconia crown in the maxillary first molar region. A 200-N axial occlusal load was applied to the crown, and measurements were made of the von Mises stress (sigma(vM)) for the implant, and tensile stress (sigma(max)), shear stress (tau(max)), and strain (epsilon(max)) the two factors investigated (collar and thread designs) were evaluated by one-way analysis of variance (ANOVA) at a 5% significance level. Results: Collar design was the main factor of influence on von Mises stress in the implant and stresses/strain in the cortical bone, while thread design was the main factor of influence on stresses in the trabecular bone (P < .05). The optimal collar design able to produce more favorable stress/strain distribution was the microthreaded design for the cortical bone. For the trabecular bone, the triangular thread shape had the lowest stresses and strain values among the square and trapezoidal implants. Conclusion: Stress/strain distribution patterns were influenced by collar design in the implant and cortical bone, and by thread design in the trabecular bone. Microthreads and triangular thread-shape designs presented improved biomechanical behavior in posterior maxillary bone when compared with the smooth collar design and trapezoidal and square-shaped threads.
Subject: Dental Implants
Finite Element Analysis
Editor: Quintessence Publishing Co Inc
Hanover Park
Rights: fechado
Identifier DOI: 10.11607/jomi.4797
Date Issue: 2017
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
000397969300011.pdf228.88 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.