Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/329673
Type: Artigo
Title: Simulation And Process Design Of Continuous Countercurrent Ethanolic Extraction Of Rice Bran Oil
Simulation and process design of continuous countercurrent ethanolic extraction of rice bran oil
Author: Bessa, Larissa C. B. A.
Ferreira, Marcela C.
Rodrigues, Christianne E. C.
Batista, Eduardo A. C.
Meirelles, Antonio J. A.
Abstract: The overwhelming majority of all vegetable oils is extracted using solvent extraction, and the most widely used solvent is hexane. However, the use of ethanol has attractive advantages, including low toxicity, good operational security, as well as being obtained from a biorenewable source. In this study, a multiple-batch solid-liquid extraction system has been successfully employed to simulate continuous countercurrent ethanolic extraction of rice bran oil. Results showed that the extraction process using ethanol as solvent is feasible and facilitated by increases in temperature. The number of equilibrium stages required for rice bran oil extraction was theoretically determined, and it was shown that in the extraction process using hexane the number of ideal stages is lower than the number required when ethanol is used as solvent. Furthermore, a mathematical expression for determining the minimum flow of solvent depending on the equilibrium relationship between the extract and raffinate phases has been developed and implemented for both solvents. Given the potential fire hazard and harmful emissions risks of using hexane as solvent, extraction with ethanol showed to be a promising alternative to conventional extraction, completely exhausting the solid matrix with only five stages. (C) 2017 Elsevier Ltd. All rights reserved.
The overwhelming majority of all vegetable oils is extracted using solvent extraction, and the most widely used solvent is hexane. However, the use of ethanol has attractive advantages, including low toxicity, good operational security, as well as being o
Subject: Óleo de farelo de arroz
Etanol
Solventes
Country: Reino Unido
Editor: Elsevier
Citation: Journal Of Food Engineering . Elsevier Sci Ltd , v. 202, p. 99 - 113, 2017.
Rights: fechado
Fechado
Identifier DOI: 10.1016/j.jfoodeng.2017.01.019
Address: https://www.sciencedirect.com/science/article/pii/S0260877417300250
Date Issue: 2017
Appears in Collections:FEA - Artigos e Outros Documentos
FT - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
000395845200011.pdf1.21 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.