Please use this identifier to cite or link to this item:
http://repositorio.unicamp.br/jspui/handle/REPOSIP/329519
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.CRUESP | UNIVERSIDADE ESTADUAL DE CAMPINAS | pt_BR |
dc.contributor.authoremail | papa@fc.unesp.br | pt_BR |
dc.contributor.authorunicamp | Falcão, Alexandre Xavier | pt_BR |
dc.type | Artigo | pt_BR |
dc.title | Optimum-path Forest Based On K-connectivity: Theory And Applications | en |
dc.title | Optimum-path forest based on k-connectivity : theory and applications | pt_BR |
dc.contributor.author | Papa, João Paulo | pt_BR |
dc.contributor.author | Nachif Fernandes, Silas Evandro | pt_BR |
dc.contributor.author | Falcao, Alexandre Xavier | pt_BR |
unicamp.author | [Falcao, Alexandre Xavier] Univ Estadual Campinas, Inst Comp, Av Albert Einstein 1251, BR-13083852 Campinas, SP, Brazil | pt_BR |
unicamp.author.external | [Papa, Joao Paulo] Sao Paulo State Univ, Dept Comp, Av Eng Luiz Edmundo Carrijo Coube, BR-17033360 Bauru, SP, Brazil | pt_BR |
unicamp.author.external | [Nachif Fernandes, Silas Evandro] Univ Fed Sao Carlos, Dept Comp, Rod Washington Luis,Km 235, BR-13565905 Sao Carlos, SP, Brazil | pt_BR |
dc.subject | Pattern Classification | en |
dc.subject | Optimum-path Forest | en |
dc.subject | Supervised Learning | en |
dc.subject | Reconhecimento de padrões | pt_BR |
dc.subject | Floresta de caminhos ótimos | pt_BR |
dc.subject | Aprendizado de máquina | pt_BR |
dc.subject | Inteligência artificial | pt_BR |
dc.subject.otherlanguage | Pattern recognition | pt_BR |
dc.subject.otherlanguage | Optimum-path forest | pt_BR |
dc.subject.otherlanguage | Machine learning | pt_BR |
dc.subject.otherlanguage | Artificial intelligence | pt_BR |
dc.description.abstract | Graph-based pattern recognition techniques have been in the spotlight for many years, since there is a constant need for faster and more effective approaches. Among them, the Optimum-Path Forest (OPF) framework has gained considerable attention in the last years, mainly due to the promising results obtained by OPF-based classifiers, which range from unsupervised, semi-supervised and supervised learning. In this paper, we consider a deeper theoretical explanation concerning the supervised OPF classifier with k-neighborhood (OPFk), as well as we proposed two different training and classification algorithms that allow OPFk to work faster. The experimental validation against standard OPF and Support Vector Machines also validates the robustness of OPFk in real and synthetic datasets. (C) 2016 Elsevier B.V. All rights reserved. | en |
dc.description.abstract | Graph-based pattern recognition techniques have been in the spotlight for many years, since there is a constant need for faster and more effective approaches. Among them, the Optimum-Path Forest (OPF) framework has gained considerable attention in the las | pt_BR |
dc.relation.ispartof | Pattern recognition letters | pt_BR |
dc.publisher.city | Amsterdam | pt_BR |
dc.publisher.country | Países Baixos | pt_BR |
dc.publisher | Elsevier | pt_BR |
dc.date.issued | 2017 | pt_BR |
dc.date.monthofcirculation | Feb. | pt_BR |
dc.identifier.citation | Pattern Recognition Letters. Elsevier Science Bv, v. 87, p. 117 - 126, 2017. | pt_BR |
dc.language.iso | eng | pt_BR |
dc.description.volume | 87 | pt_BR |
dc.description.firstpage | 117 | pt_BR |
dc.description.lastpage | 126 | pt_BR |
dc.rights | fechado | pt_BR |
dc.rights | Fechado | pt_br |
dc.source | WOS | pt_BR |
dc.identifier.issn | 0167-8655 | pt_BR |
dc.identifier.eissn | 1872-7344 | pt_BR |
dc.identifier.wosid | WOS:000395616700015 | pt_BR |
dc.identifier.doi | 10.1016/j.patrec.2016.07.026 | pt_BR |
dc.identifier.url | https://www.sciencedirect.com/science/article/pii/S0167865516302057 | pt_BR |
dc.description.sponsorship | CAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR | pt_BR |
dc.description.sponsorship | FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO | pt_BR |
dc.description.sponsorship | CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO | pt_BR |
dc.description.sponsorship1 | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | pt_BR |
dc.description.sponsorship1 | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | pt_BR |
dc.description.sponsorship1 | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | pt_BR |
dc.description.sponsordocumentnumber | PROCAD 2966/2014 | pt_BR |
dc.description.sponsordocumentnumber | 2009/16206-1; 2013/20387-7; 2014/2014/16250-9 | pt_BR |
dc.description.sponsordocumentnumber | 303182/2011-3; 70571/2013-6; 306166/2014-3 | pt_BR |
dc.date.available | 2017-11-13T13:54:51Z | - |
dc.date.accessioned | 2017-11-13T13:54:51Z | - |
dc.description.provenance | Made available in DSpace on 2017-11-13T13:54:51Z (GMT). No. of bitstreams: 1 000395616700015.pdf: 1633820 bytes, checksum: 968f17a3d9e653fd2c38319cc5fa9c44 (MD5) Previous issue date: 2017 Bitstreams deleted on 2021-01-04T14:26:16Z: 000395616700015.pdf,. Added 1 bitstream(s) on 2021-01-04T14:27:20Z : No. of bitstreams: 1 000395616700015.pdf: 1699003 bytes, checksum: f071680466bd209c985158a8f5b8a204 (MD5) | en |
dc.identifier.uri | http://repositorio.unicamp.br/jspui/handle/REPOSIP/329519 | - |
dc.description.conferencenome | 10th IAPR-TC15 workshop on graph-based representations in pattern recognition | pt_BR |
dc.description.conferencedate | MAY 13-15, 2015 | pt_BR |
dc.description.conferencelocation | Beijing, PEOPLES R CHINA | pt_BR |
dc.contributor.department | Departamento de Sistemas de Informação | pt_BR |
dc.contributor.unidade | Instituto de Computação | pt_BR |
dc.subject.keyword | Pattern classification | pt_BR |
dc.subject.keyword | Optimum-path forest | pt_BR |
dc.subject.keyword | Supervised learning | pt_BR |
dc.identifier.source | 000395616700015 | pt_BR |
dc.creator.orcid | 0000-0002-2914-5380 | pt_BR |
dc.type.form | Artigo de evento | pt_BR |
Appears in Collections: | IC - Artigos e Outros Documentos |
Files in This Item:
File | Size | Format | |
---|---|---|---|
000395616700015.pdf | 1.66 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.