Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/328375
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE ESTADUAL DE CAMPINASpt_BR
dc.contributor.authorunicampBrunetto, Gustavopt_BR
dc.contributor.authorunicampGalvão, Douglas Soarespt_BR
dc.typeArtigopt_BR
dc.titleSolid-vapor Reaction Growth Of Transition-metal Dichalcogenide Monolayersen
dc.titleSolid-vapor reaction growth of transition-metal dichalcogenide monolayerspt_BR
dc.contributor.authorLi, B.pt_BR
dc.contributor.authorGong, Y.pt_BR
dc.contributor.authorHu, Z. L.pt_BR
dc.contributor.authorBrunetto, G.pt_BR
dc.contributor.authorYang, Y.pt_BR
dc.contributor.authorYe, G.pt_BR
dc.contributor.authorZhang, Z.pt_BR
dc.contributor.authorLei, S.pt_BR
dc.contributor.authorJin, Z.pt_BR
dc.contributor.authorBianco, E.pt_BR
dc.contributor.authorZhang, X.pt_BR
dc.contributor.authorWang, W.pt_BR
dc.contributor.authorLou, J.pt_BR
dc.contributor.authorGalvão, D. S.pt_BR
dc.contributor.authorTang, M.pt_BR
dc.contributor.authorYakobson, B. I.pt_BR
dc.contributor.authorVajtai, R.pt_BR
dc.contributor.authorAjayan, P. M.pt_BR
dc.subjectChemical Vapor Depositionen
dc.subjectGrowth Mechanismsen
dc.subjectMolybdenum Diselenideen
dc.subjectMonolayersen
dc.subjectTransition-metal Dichalcogenideen
dc.subjectDeposição química de vapor, Monocamadas auto-organizadas, Dicalcogenetos de metais de transiçãopt_BR
dc.subject.otherlanguageChemical vapor deposition, Self-assembled monolayers, Transition metal dichalcogenidespt_BR
dc.description.abstractTwo-dimensional (2D) layered semiconducting transition-metal dichalcogenides (TMDCs) are promising candidates for next-generation ultrathin, flexible, and transparent electronics. Chemical vapor deposition (CVD) is a promising method for their controllable, scalable synthesis but the growth mechanism is poorly understood. Herein, we present systematic studies to understand the CVD growth mechanism of monolayer MoSe2, showing reaction pathways for growth from solid and vapor precursors. Examination of metastable nanoparticles deposited on the substrate during growth shows intermediate growth stages and conversion of non-stoichiometric nanoparticles into stoichiometric 2D MoSe2 monolayers. The growth steps involve the evaporation and reduction of MoO3 solid precursors to sub-oxides and stepwise reactions with Se vapor to finally form MoSe2. The experimental results and proposed model were corroborated by abinitio Car-Parrinello molecular dynamics studies.en
dc.description.abstractTwo-dimensional (2D) layered semiconducting transition-metal dichalcogenides (TMDCs) are promising candidates for next-generation ultrathin, flexible, and transparent electronics. Chemical vapor deposition (CVD) is a promising method for their controllable, scalable synthesis but the growth mechanism is poorly understood. Herein, we present systematic studies to understand the CVD growth mechanism of monolayer MoSe2, showing reaction pathways for growth from solid and vapor precursors. Examination of metastable nanoparticles deposited on the substrate during growth shows intermediate growth stages and conversion of non-stoichiometric nanoparticles into stoichiometric 2D MoSe2 monolayers. The growth steps involve the evaporation and reduction of MoO3 solid precursors to sub-oxides and stepwise reactions with Se vapor to finally form MoSe2. The experimental results and proposed model were corroborated by abinitio Car-Parrinello molecular dynamics studies.pt_BR
dc.relation.ispartofAngewandte chemie international editionpt_BR
dc.relation.ispartofabbreviationAngew. chem. int. ed.pt_BR
dc.publisher.cityWeinheimpt_BR
dc.publisher.countryAlemanhapt_BR
dc.publisherWiley-VCH Verlagpt_BR
dc.date.issued2016pt_BR
dc.date.monthofcirculationAug..pt_BR
dc.identifier.citationAngewandte Chemie International Edition. Wiley-v C H Verlag Gmbh, v. 55, p. 10656 - 10661, 2016.pt_BR
dc.language.isoengpt_BR
dc.description.volume55pt_BR
dc.description.issuenumber36pt_BR
dc.description.firstpage10656pt_BR
dc.description.lastpage10661pt_BR
dc.rightsfechadopt_BR
dc.sourceWOSpt_BR
dc.identifier.issn1433-7851pt_BR
dc.identifier.eissn1521-3773pt_BR
dc.identifier.doi10.1002/anie.201604445pt_BR
dc.identifier.urlhttps://onlinelibrary.wiley.com/doi/full/10.1002/anie.201604445pt_BR
dc.description.sponsorshipCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOpt_BR
dc.description.sponsorshipCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORpt_BR
dc.description.sponsorshipFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOpt_BR
dc.description.sponsorship1CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOpt_BR
dc.description.sponsorship1CAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORpt_BR
dc.description.sponsorship1FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOpt_BR
dc.description.sponsordocumentnumberSem informaçãopt_BR
dc.description.sponsordocumentnumberSem informaçãopt_BR
dc.description.sponsordocumentnumber2013/08293-7pt_BR
dc.date.available2017-11-13T13:24:48Z-
dc.date.accessioned2017-11-13T13:24:48Z-
dc.description.provenanceMade available in DSpace on 2017-11-13T13:24:48Z (GMT). No. of bitstreams: 1 000383473600021.pdf: 3580148 bytes, checksum: 501e3ff309eb867e230c385f115a5858 (MD5) Previous issue date: 2016 Bitstreams deleted on 2020-09-02T13:42:18Z: 000383473600021.pdf,. Added 1 bitstream(s) on 2020-09-02T13:46:37Z : No. of bitstreams: 1 000383473600021.pdf: 3656262 bytes, checksum: 156b6b1095dc99f47373f95bcc1edbca (MD5)en
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/328375-
dc.contributor.departmentDepartamento de Física Aplicadapt_BR
dc.contributor.departmentDepartamento de Física Aplicadapt_BR
dc.contributor.unidadeInstituto de Física Gleb Wataghinpt_BR
dc.contributor.unidadeInstituto de Física Gleb Wataghinpt_BR
dc.subject.keywordGrowth mechanisms, Molybdenum diselenidept_BR
dc.identifier.source000383473600021pt_BR
dc.creator.orcid0000-0002-7260-7907pt_BR
dc.creator.orcid0000-0003-0145-8358pt_BR
dc.type.formArtigopt_BR
dc.description.sponsorNoteThis work was supported in part by the Army Research Office (MURI grant W911NF‐11‐1‐0362), and by FAME, one of six centers of STARnet, a Semiconductor Research Corporation Program sponsored by MARCO and DARPA. G.B. and D.S.G. acknowledge financial support from the Brazilian Agencies CNPq, CAPES, and FAPESP and also thank the Center for Computational Engineering and Sciences at Unicamp for financial support through the FAPESP/CEPID Grant 2013/08293‐7. Z.H., Z.Z., and B.I.Y. acknowledge support from the DOE BES (Grant DE‐SC0012547). M.T. acknowledges support from the DOE Office of Basic Energy Sciences Physical Behavior of Materials Program (DE‐SC0014435). Y.Y. and J.L. acknowledge support from the Welch Foundation (Grant C‐1716). Z.J. and J.L. are grateful for support through the AFOSR Grant FA9550‐14‐1‐0268. We also thank Dr. Wu Zhou for providing STEM images and Dr. Qinghong Yuan and Dr. Xiaolong Zou (Rice University) as well as Prof. Chuanhong Jin and Prof. Mingsheng Xu (Zhejiang University) for helpful discussions.pt_BR
Appears in Collections:IFGW - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
000383473600021.pdf3.57 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.