Please use this identifier to cite or link to this item:
http://repositorio.unicamp.br/jspui/handle/REPOSIP/327849
Type: | Congresso |
Title: | Deep Neural Networks Under |
Author: | Carvalho Micael; Cord Matthieu; Avila Sandra; Thome Nicolas; Valle Eduardo |
Abstract: | In recent years, deep architectures have been used for transfer learning with state-of-the-art performance in many data sets. The properties of their features remain, however, largely unstudied under the transfer perspective. In this work, we present-an extensive analysis of the resiliency of feature vectors extracted front deep models, with special focus on the trade-off between performance and compression rate. By introducing perturbations to image descriptions extracted from a deep convolutional neural network, we change their precision and number of dimensions, measuring how it affects the final score. We show that deep features are more robust to these disturbances when compared to classical approaches, achieving a compression rate of 98.4%, while losing only 0.88% of their original score for Pascal VOC 2007. |
Subject: | Feature Robustness Deep Teaming Transfer Learning Image Classification Feature Compression |
Editor: | IEEE New York |
Citation: | 2016 Ieee International Conference On Image Processing (icip). Ieee, p. 4443 - 4447, 2016. |
Rights: | fechado |
Address: | http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7533200 |
Date Issue: | 2016 |
Appears in Collections: | Unicamp - Artigos e Outros Documentos |
Files in This Item:
File | Size | Format | |
---|---|---|---|
000390782004083.pdf | 1.04 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.