Please use this identifier to cite or link to this item:
Type: Congresso
Title: Deep Neural Networks Under
Author: Carvalho
Micael; Cord
Matthieu; Avila
Sandra; Thome
Nicolas; Valle
Abstract: In recent years, deep architectures have been used for transfer learning with state-of-the-art performance in many data sets. The properties of their features remain, however, largely unstudied under the transfer perspective. In this work, we present-an extensive analysis of the resiliency of feature vectors extracted front deep models, with special focus on the trade-off between performance and compression rate. By introducing perturbations to image descriptions extracted from a deep convolutional neural network, we change their precision and number of dimensions, measuring how it affects the final score. We show that deep features are more robust to these disturbances when compared to classical approaches, achieving a compression rate of 98.4%, while losing only 0.88% of their original score for Pascal VOC 2007.
Subject: Feature Robustness
Deep Teaming
Transfer Learning
Image Classification
Feature Compression
Editor: IEEE
New York
Citation: 2016 Ieee International Conference On Image Processing (icip). Ieee, p. 4443 - 4447, 2016.
Rights: fechado
Date Issue: 2016
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
000390782004083.pdf1.04 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.