Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/327665
Type: Artigo
Title: Union Score And Fuzzy Logic Mineral Prospectivity Mapping Using Discretized And Continuous Spatial Evidence Values
Author: Yousefi
Mahyar; Carranza
Emmanuel John M.
Abstract: Two common problems affect integration of exploration criteria for mineral prospectivity mapping (MPM) in geographic information system (GIS): (a) stochastic error associated with sufficiency in number of known mineral occurrences (KMOs) used to estimate evidential weights and (b) systemic error associated with subjectivity of expert judgment applied to process, analyze, and assign weights to evidential data. In this paper we used logistic sigmoid (or S-shaped) function to transform continuous value evidential data into logistic space without using KMOs as in data-driven MPM and without discretization of evidential data into classes by using arbitrary intervals based on expert judgment as in knowledge-driven MPM. We generated a prospectivity model using discretized evidential data as well. Then, we compared the prospectivity models generated using continuous- and discretized-value evidential data and demonstrated that the former is better model for selecting target areas for further exploration. (C) 2016 Elsevier Ltd. All rights reserved.
Subject: Union Score
Fuzzy Logic
Mineral Prospectivity Mapping
Discrete
Continuous
Spatial Evidence Values
Editor: Pergamon-Elsevier Science LTD
Oxford
Rights: fechado
Identifier DOI: 10.1016/j.jafrearsci.2016.04.019
Address: http://www-sciencedirect-com.ez88.periodicos.capes.gov.br/science/article/pii/S1464343X16301352?via%3Dihub
Date Issue: 2017
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
000399867400006.pdf7.31 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.