Please use this identifier to cite or link to this item:
Type: Artigo
Title: Revisiting The Kronecker Array Transform
Author: Masiero
Bruno; Nascimento
Vitor H.
Abstract: It is known that the calculation of a matrix-vector product can be accelerated if this matrix can be recast (or approximated) by the Kronecker product of two smaller matrices. In array signal processing, the manifold matrix can be described as the Kronecker product of two other matrices if the sensor array displays a separable geometry. This forms the basis of the Kronecker Array Transform (KAT), which was previously introduced to speed up the calculations of acoustic images with microphone arrays. If, however, the array has a quasi-separable geometry, e.g., an otherwise separable array with a missing sensor, then the KAT acceleration can no longer be applied. In this letter, we review the definition of the KAT and provide a much simpler derivation that relies on an explicit new relation developed between Kronecker and Khatri-Rao matrix products. Additionally, we extend the KAT to deal with quasi-separable arrays, alleviating the restriction on the need of perfectly separable arrays.
Subject: Fast Acoustic Imaging
Khatri-rao Identity
Kronecker Array Transform
Microphone Array
Editor: IEEE-Inst Electrical Electronics Engineers Inc
Rights: fechado
Identifier DOI: 10.1109/LSP.2017.2674969
Date Issue: 2017
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
000398855800001.pdf183.88 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.