Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/327001
Type: Artigo
Title: A New Approach For Finding A Basis For The Splitting Preconditioner For Linear Systems From Interior Point Methods
Author: Sunagua
Porfirio; Oliveira
Aurelio R. L.
Abstract: The class of splitting preconditioners for the iterative solution of linear systems arising from Mehrotra's predictor-corrector method for large scale linear programming problems needs to find a basis through a sophisticated process based on the application of a rectangular LU factorization. This class of splitting preconditioners works better near a solution of the linear programming problem when the matrices are highly ill-conditioned. In this study, we develop and implement a new approach to find a basis for the splitting preconditioner, based on standard rectangular LU factorization with partial permutation of the scaled transpose linear programming constraint matrix. In most cases, this basis is better conditioned than the existing one. In addition, we include a penalty parameter in Mehrotra's predictor-corrector method in order to reduce ill-conditioning of the normal equations matrix. Computational experiments show a reduction in the average number of iterations of the preconditioned conjugate gradient method. Also, the increased efficiency and robustness of the new approach become evident by the performance profile.
Subject: Linear Programming
Splitting Preconditioner
Rectangular Lu Factorization
Transpose Basis
Editor: Springer
New York
Rights: fechado
Identifier DOI: 10.1007/s10589-016-9887-0
Address: https://link-springer-com.ez88.periodicos.capes.gov.br/article/10.1007%2Fs10589-016-9887-0
Date Issue: 2017
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
000398939500004.pdf796.87 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.