Please use this identifier to cite or link to this item:
http://repositorio.unicamp.br/jspui/handle/REPOSIP/326995
Type: | Artigo |
Title: | Classical Least Squares Combined With Spectral Interval Selection Using Genetic Algorithm For Prediction Of Constituents In Pharmaceutical Solid Dosage Forms From Near Infrared Chemical Imaging Data Classical least squares combined with spectral interval selection using genetic algorithm for prediction of constituents in pharmaceutical solid dosage forms from near infrared chemical imaging data |
Author: | Alexandrino, Guilherme L. Breitkreitz, Márcia C. Poppi, Ronei J. |
Abstract: | A new algorithm that combines spectral interval selection using genetic algorithm and classical least squares (GA-iCLS) is presented for the prediction of the active pharmaceutical ingredients and excipients in various pharmaceutical solid dosage forms from near infrared chemical imaging data. The algorithm is based on the CLS approach, selecting the best wavenumber intervals in the unfolded hypercube of each sample (D), and in pure-compound reference spectra (S), wherein the pixel-to-pixel prediction capability of the compounds, obtained by C = DST(SST)(-1), is optimised for the samples. The wavelength intervals were selected (GA optimisation) while minimising the error between the mean concentrations of the ith compound predicted in the pixels and the nominal concentration in the corresponding sample (known a priori). The excluded wavenumber intervals from D (and S), for each sample, were interpreted based on systematic deviations from D = CST + E (CLS approach) due to the scattering effects and/or intermolecular interactions in mixtures of the pure compounds. The comparison of the chemical images generated from the predictions performed using the GA-iCLS algorithms with similar-images obtained without spectral interval selection, using direct CLS and multivariate curve resolution-alternating least squares, revealed the potential applicability of the proposed algorithm for analytical purposes for pharmaceuticals using chemical imaging data. A new algorithm that combines spectral interval selection using genetic algorithm and classical least squares (GA-iCLS) is presented for the prediction of the active pharmaceutical ingredients and excipients in various pharmaceutical solid dosage forms fr |
Subject: | Near Infrared Chemical Imaging Solid Dosage Forms Multivariate Curve Resolution Classical Least Squares Genetic Algorithm Espectroscopia de imagem Infravermelho próximo Algoritmos genéticos Fármacos |
Country: | Reino Unido |
Editor: | Sage |
Citation: | Journal Of Near Infrared Spectroscopy. N I R Publications, v. 24, p. 157 - 169, 2016. |
Rights: | fechado |
Identifier DOI: | 10.1255/jnirs.1201 |
Address: | https://journals.sagepub.com/doi/abs/10.1255/jnirs.1201 |
Date Issue: | 2016 |
Appears in Collections: | IQ - Artigos e Outros Documentos |
Files in This Item:
File | Size | Format | |
---|---|---|---|
000381677600007.pdf | 3.68 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.