Please use this identifier to cite or link to this item:
Type: Artigo
Title: Augmented Mixed Models For Clustered Proportion Data
Author: Bandyopadhyay
Dipankar; Galvis
Diana M.; Lachos
Victor H.
Abstract: Often in biomedical research, we deal with continuous (clustered) proportion responses ranging between zero and one quantifying the disease status of the cluster units. Interestingly, the study population might also consist of relatively disease-free as well as highly diseased subjects, contributing to proportion values in the interval [0, 1]. Regression on a variety of parametric densities with support lying in (0, 1), such as beta regression, can assess important covariate effects. However, they are deemed inappropriate due to the presence of zeros and/or ones. To evade this, we introduce a class of general proportion density, and further augment the probabilities of zero and one to this general proportion density, controlling for the clustering. Our approach is Bayesian and presents a computationally convenient framework amenable to available freeware. Bayesian case-deletion influence diagnostics based on q-divergence measures are automatic from the Markov chain Monte Carlo output. The methodology is illustrated using both simulation studies and application to a real dataset from a clinical periodontology study.
Subject: Augment
Dispersion Models
Kullback-leibler Divergence
Proportion Data
Periodontal Disease
Editor: Sage Publications Ltd
Rights: fechado
Identifier DOI: 10.1177/0962280214561093
Date Issue: 2017
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
000399704500021.pdf412.54 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.