Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/326588
Type: Artigo
Title: Predicting Runoff Risks By Digital Soil Mapping
Author: da Silva
Mayesse Aparecida; Naves Silva
Marx Leandro; Owens
Phillip Ray; Curi
Nilton; Oliveira
Anna Hoffmann; Candido
Bernardo Moreira
Abstract: Digital soil mapping (DSM) permits continuous mapping soil types and properties through raster formats considering variation within soil class, in contrast to the traditional mapping that only considers spatial variation of soils at the boundaries of delineated polygons. The objective of this study was to compare the performance of SoLIM (Soil Land Inference Model) for two sets of environmental variables on digital mapping of saturated hydraulic conductivity and solum depth (A + B horizons) and to apply the best model on runoff risk evaluation. The study was done in the Posses watershed, MG, Brazil, and SoLIM was applied for the following sets of co-variables: 1) terrain attributes (AT): slope, plan curvature, elevation and topographic wetness index. 2) Geomorphons and terrain attributes (GEOM): slope, plan curvature, elevation and topographic wetness index combined with geomorphons. The most precise methodology was applied to predict runoff areas risk through the Wetness Index based on contribution area, solum depth, and saturated hydraulic conductivity. GEOM was the best set of co-variables for both properties, so this was the DSM model used to predict the runoff risk. The runoff risk showed that the critical months are from November to March. The new way to classify the landscape to use on DSM was demonstrated to be an efficient tool with which to model process that occurs on watersheds and can be used to forecast the runoff risk.
Subject: Geomorphons
Terrain Attributes
Saturated Hydraulic Conductivity
Solum Depth
Editor: Soc Brasileira de Ciencia do Solo
Viçosa
Rights: aberto
Identifier DOI: 10.1590/18069657rbcs20150353
Address: http://www.scielo.br/scielo.php?pid=S0100-06832016000100310&script=sci_arttext
Date Issue: 2016
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
000396234000023.pdf1.81 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.